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For quite sometime I have f e l t  th'e need f o r  a thorough 
i physico-chemical investigation of the  phenomenon of cavitation. Although 4 

fundamental concepts were f a i r l y  well  established by F&tinger, nonethe- 
less ,  a large number of problems, especially those of material  strength, 
required a solution. When Prof. Dr. L. Ebert , a former colieague a t  the . 
Karlsruhe Technical High School; concurred with my proposal concerning 
t h i s  problern and placed at my disposal one of h i s  coworkers, Dr. Nowotny, 
I was indeed grateful.  C 

For providing the f a c i l i t i e s  our thanks go t o  Prof. Dr .  Holler, 
Director of t h e  Griesheim Works of the  I. G. Farben Industries. 

After a few conclusive tests carried out in a Venturi tube w i t h  a 
hydraulic flow strength of lrOO horsepower, in  which t races of cavitation 
could be detected within 30 seconds, we decided t o  make further t e s t s  
uslnq a high frequency osc i l la tor .  Only with t h i s  apparatus was it con- 
sidered possible to  study the  cavitation problem unde2 the influence of 
a l l  measurable variables. For here a t e s t  specimen of l e s s  than 100 g 
may be subjected t o  osc i l la t ions  of high frequencies in a cupful of any 
chosen liquid. 

*-. 
The resul t s  of t h e  many t e s t s  carried out with various types of 

sol ids  in different l iquids  are  incorporated in t h i s  report. Not only 
do t h e  r e su l t s  establish a classification, but the  t e s t s  throw l ight  upon A 
the very beginning and upon the subsequent steps of materials erosion. 
Dr .  Nowotnyls t e s t s  have given a comprehensive concept of the progressive 
action of cavitation and the conclusions reached f romthe  resul t s  
(including the role  of t h e  chemical reactions) appear t o  me t o  be f r e e  
from f laws .  From the theore t ica l  standpoint as well a s  i n  applied prac- 

I tice these r e su l t s  should prove of considerable significance. 
m 

I am sure t h a t  t h i s  book will be of great in t e res t  t o  those who have 
occasion t o  deal  w i t h  t he  phenomenon of cavitation. 

Karlsruhe, July 19U. 

I W. Spamhake, V.D.I. 
. 

I 

0 



TABLE OF CON'II3NTS 1 ;& 

, - 
Notations ..............,............................... iii 

................................................. 
2. Materials dest ruct ion through cav i ta t ion  ........... 2 . 

3. T e s t i n g  method ..................................... 4 

re .....A ........................... 6 

5. Thepsriodicityincavitation. . . . . . . . . . . . . . . . . . . . . .  9 

- .-'rangement ......................;................. 9 
<*,- 

7. Cavitation produced by ul t rasonic  o s c i l l a t o r  ....... U 

8. Methods of measurement and general observations .... 13 

7 .  m e  vapor pocket formation a t  the boundary ........................................... surface l4 I 
LO. Damage brought about i n  water and aqueous ......................................... I solutions 16 I . . 

Ln organic l i qu ids  ............ 18 

12. Degree of damage caused by osc i l l a t i ng  
. vapor bubbles .....e......,.........o.............o 20 

p of t h e  cavi ta t ion a t t ack  ....................... t o  pressure and temperature 21 

cavi ta t ion a t tack  on t h e  . 
tension and the viscos i ty  of the  l iquid ... 23 











I. CAVITATION 

1. Introduction 

The designers and the builders of hydraulic power machines have 
known f o r  a long time of the  destruction .to machine parts when t he  
pressure of the l iquid  p drops a t  the p1ace.b question t o  the vapor 
pressure p,; i.e, p = ps, In'this case we have in place of a 
homogeneous l iquid  a dual phase condition, namaly l i qu id  and coexisrting 
vapor, As a consequence there occurs cavitation, the pitking of the  
material. There a r e  two phases t o  t h i s  ph13nomenon9 the  loss in energy . 
and a t  the same timf! the  destruction of the material, The causes f o r  the 
attack on materials have as yet not been frllly understood. In the begin- 
ning the .problem was apfiroached from the h3Fdrod,ynamic sicie i n  which 
"outsideI1 conditiors were considered responsible for  cavitation. By 
lloutsideN conditions a re  meant v e l o c i t y  an& pressure with the* dependency 
on time, especially with the  developnent of osci l la tory conditions. We, 
on the other hand, approached t h e  probien with the I1innerll condition8 in 
mind which we considered necessary t o  show the  mechanism of cavitation, 

(1) The convergent-divergent tube ( ~ b t t  inger ) and t h e  modified 
diffusor of ~ c h r s t e r  (52). 

(2) The water impact apparatus by 'hmegger (27) and that. of 
de Haller (a), 

(3) The ram arrangement of Ackeret a d  de Haller ( 5 ) .  

(4) The frequency o s c U 8 t o ~  of Gaines (22), 

The simplest experimental apparatus is. a smooth-walled 
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according t o  E. Spannhake b investigations (61) occurs with a defini te  
frequency f which bears a simple relationship t o  the  stream velocity . L 

V i n  the narrowest cross section and t he  length of the hollow _I 

space L: -. 

where k i s  the  factor of proportionality. In order t o  convey the  idea 
of the  magnitude of the converted e n e r a  in to  sound, it may be remarked - 
t ha t  in the case of the  ~ e n t u r i  chamber ins ta l led  outdoors a t  the  
Schwarzenbachwerk with a water column of 350 m (1,150 fee t )  where Vmax = 
80 m/sec (260 ft/sec) the sound can be heard hundreds of meters away. The 
formation of the  hollow spaces were also proven b.v means of oscil loma~hic 

i n  the  inifdal stage of cavitation showed tha t  pressures reach t h e  nagni- 
I tude of the vapor stresses in the divergent part of the  chamber but drop 

space and vapor pockets formation l e d  t o  the  replacement of the term cavi- 
t a t ion  by the  term Hohlsog ( l i t e r a l l y  t o  suck hollow). In our discussion 

1 sha l l  show that ,  in general, the concept of cavitation covers not only 
the foxmation of hollow spaces but a l l  other hydrodynamic phenomena 

material, The employment of t h i s  term is-suited, as vre sha l l  see l a t e r ,  
t o  the  drop impact apparat~ls and the ram apparatus, although the  term 
does not characterize the fundamental mechanics. 

!ti on through cavitation 

Materials t e s t ing  for  strength and corrosion resistance has long 
been carried out in a sys temt ic  manner, but a lack of understanding of 
the  t rue  causes of cavi ta t io i~  and similar water impact s t resses  has 
hitherto prevented a systematic b r e s t i g a t i o n  of the cavitation attack on . 
various materials a s  well a s  t h e i r  cavitation resistance. 

Failure types caused by purely mechanical stresses,  such as tension, 
I compression, fatigue, or scouring are different from those caused by 

I concept of cavitation corrosion and cavitation erosion. T h i s  l e d  t o  the  
t h a t  the primary causes could be considered t o  be purely 
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chemically r e s i s t an t  mater ia ls  such as-&assj .p las t ics ,  e t c  . , soon showed 
t h a t  t he  destruction was caused in the  main by mechanical processes, and 
t h a t  the  e l ec t ro ly t i c  a t t acks  were secondary and must therefore be of 
l e s s e r  importance. The unique dest ruct ive  e f fec t s ,  which a t  times are 
i n i t i a t e d  in extremely short  periods, may be e lass i f fed  according to  
t h e i r  outward appearances, Dependfng upon t h e  par t icu la r  mater ia l  which 
i s  subjected t o  cavitat ion,  these  nay be  manifested by bo i l s ,  b l i . s te r s j  
p i t s ,  sponge-like s t ructuras  and c r a t e r s  . 0ccas~onaU.y one f inds  ( fo r  
instance i n  glass)  evidence of i n t e rna l  rupture and s t r e s se s  before any 
dest ruct ive  e f fec t  i s  noted at t h e  s u ~ f a c e  (261, Bgl.esson was t h e  f b s t  
t o  point t o  cavi ta t ion destruction as being of  t he  n a t w e  of a corrosion 
fa t igue f a i l u r e  (19) since, as we s h a l l  show in grea te r  d e t a i l  l a t e r ?  
t he re  a r e  always rhythmic stream f l o w s  connected with destruction by 
hydraulic impac+, . Englesson examined cavi ta t  ed t u b i n e  blades made of 
various materials--special bronzes, high=- and low-alloy steels-and found 
t h a t  t h e i r  behavior vdth respect. t o  c a d t a t i o n  s t r e s se s  9.s determined by 
t h e  corrosion fa t igue  limit, From mferoskopic examinations i% i s  apparent 
t h a t  thepe i s  a deformation of tho c ~ y s t U t e s  a t  t h e  surface o f  t h e  p i t s ,  
Figure 7 shows a cut through the  affected region of east. ban in which the 
graphite laminate has been washed out, Thorns (63)  gives a plausible  
explanation concerning t h i s  strain, especially with regard f.0 t h e  strongly 
grooved condition which or ig ina l ly  was moo'thly polished, He a t t r i bu t e9  
these  appearances mainly t o  t he  exploding ac t ion  in t h e  always present 
micropores by the  hpaet waves of t h e  Ifquid,  

(According t o  A l l i e d  

-- ImpaeZ; - . -- 'R'C 
Pressure head g 

where v i s  t he  ve loc i ty  of t h e  f l d d ,  c i s  the  ve loc i ty  of sound and 
g i s  acceleration due t o  gravity,,) 

The pressures reached a r e  lnsuff iefent  t o  cause any d i r ec t  damage; 
however, they are  s ~ f f i c f e n ~ i y  large r o  bring about 1ocalrEzed destruction 
at  t h e  root of t h e  dcroindentations.  Nurrerous a t t m p t s  have been made 
t o  explain t h e  dest ruct ion brought. about by cavi ta t ion by a mult ipl icat ion 
mechanism in the  sense used by Ackeret which woulc! give the high pressures 
necessary t o  cause t h i s  wear in mater ia ls .  In the ease of s t e l l i t e s  (non- 
ferrous  a l l oys )  these  r e q u a d  pressures are above 10,000 atmosphe~es, 
Some of t h e  authors . u sbg  this explariation were Ackeret (2), Parsons and 
Cook (43) and especial ly  v, Schwarz and Mantel (55) , 

~ 8 t t i n ~ e s  alluded t o  a t tacks  of hammer.-like pressure impacts on 
pores and cracks within very small regions. He a l s o  thought it possible 
t h a t  a s  a consequence there  might be local ized temperature increases.  

Nevertheless, t h e  so-called primary process in the  destruction of 
mater ia ls  remained unknown, T h i s  was p e ~ h s p s  due t o  t h e  techniques 
employed when t e s t i ng  materials for  strength and proteet ion,  It is qui te  



obvious tha t  a different  procedure would be required which would permit 
the evaluation of the types of s t resses  tha t  accompany the  cavitation A 

process. -1 

3 .  Testing method 

The f i r s t  systematic experiments t o  determine the  .wesf: on materials 
i n  the  venturi  tube by cavitation were carried out by Schroter (51). 
The evaluation of the  material strength was made on a basis  of weight 
loss  with respect t o  time, similk t o  the  method of abrasion or  chemical - 
corrosion tests .  The re su l t s  indicate t h a t  the  weight remaha constant 
a t  the beginning and tha t  only a f t e r  a def in i te  period (incubation period) 
i s  there a measurable loss  of  weight which then follows a st&isight l ine  . 
course. Figure 8 shows the weight los s  with respect t o  .time fa r  s tee ls ,  
s t e e l  alloys, and cast  i ron in both the natural. and i n  the  annealed s ta te ,  
a f t e r  being subjected t o  cavitation in t h e  vanturi  tube." This graph 

S w a r  resul t s  with the  ccrves s l i g h t i  robded were obtained by 
Schroter ( 52) with h i s  spec2al diffuser, and by v. Schwarz and coworkers 
(55 and 56) with the  dropimpact apparatus. - 

The ru le  se t  UP by ~ c h r s t e r ,  t ha t  t h e  weight l o s s  i s  inversely b - 
proportional t o  the hardness of the material, i s  val id f o r  high-alloy 
s tee ls ,  ss was shown by the Kar lsnhe  tect,s. For other materials, how- 
ever, it does not hold. From t h i s  it may be gathered tha t  there i s  no .* 1 

simple relationship between strength of materid and the  hardness a s  
measured, f o r  example, by the Brine11 t e s t .  In our discussion, strength 

,of material  i s  understood t o  be in re la t ion  t o  cavitation resistance. 
Both Schrbter and ~ a t t i n ~ e r ,  a f t e r  tes t ing  metals and nonmetals of t h e  
most diverse chemical compositions came t o  the conclusion t h a t  the  chemical 
influence upon cavitation cannot be considered a s  important a s  the  more 

I mechanical s t r e s s ~ s  acting upon the  material, A t  the suggestion of 
0. WaSchner, Schroter subsequently changed the  diffuser so as t o  have a 
constricted stream f a l l  upon the t e s t  specimen. With such an arrangement 
Mousson (36) investigated a great number of materials f o r  cavitatton 
resistance in which the  volume losses suffered i n  def in i te  periods were 
compared. Table 1 gives the  resul t s  for  various so r t s  of cast  iron, 
pf ter  1 6  hours of cavitation, The size of the  specimen was about 
10 x 3 x 0.2 cm. 

*These t e s t  r e su l t s  were obtained by L. Ebert and PI. Spannhage with 
high head or i f ice  a t  Schwarzenbachwerk. ( ~ e c h .  High School, Karlsruhe, 
1938, unpublished. ) 



Table 1 

Volume l o s s  of cast  i r on  and ca s t  ikon 

*There numbers a r e  merely r e l a t i ve  

Micro inveztigation supplementing macroscopic inspection m s  
introduced by Bottcher (a) in order t,o study c a v f t a t i m  destruction more 
closely. Prepared c ~ t s  of c a ~ i t a t e d  mater ia ls  disclose under strong 
magnification slippage l i n e s  a d  crack fopmaitions which acco~dir ig  t o  
Eottcher indicate fat igue in t he  material. A qualitative evaluation may 
be obtdned  by t h i s  method of e&ation inasmuch as the strength of she 
at tack,  t h e  type of destruction according t o  Pagm Ts clapsif icat ion (4.2); 
and t h e  micrographic examination may be affected in t h e  same mannerl. 
With t h e  aid of t h e  micrographic procedure,'for which p .?pose polished 
surfaces are sui table ,  it i s  possible t o  count t h e  individual point of 
damage from which a t  t he  same t h e  t h e  average magnitude of t h e  ind5vi.d- 
ual pegions may be de te rdned ,  

Figure ll shows a brass  t e s t  spechen  which had been subjected t*o 
cavi ta t ion and in which not only t h e  local destruction but also the 
exposure of t h e  gra ins  may be plainly seen. A t  various plapes there  are 
also p l a s t i c  d e f o r t i o n s  whlch even on plane, smooth surfaces cover an 
area of about 10- t o  cm2e This type of deformation may be observed 
a t  times a f t e r  an extremely short  in te rva l ,  a few seconds. In Figure 12 
we  have t he  microphotograph of a cavi ta ted brass specimen (us 60) which 
shows a small  area of t he  destruction,  If one were t o  attribute t h i s  



pressures above 9,000 k&'cmz (228,000 lbs)sq in) would'bo requiEed. In 
t h i s  analysis,  however, the f a c t  should not be overlooked tha t  alternating 
s trasses  of great influence a r e  active which may event--;,lead t o  per- 
1 ,4en t  fractures ,  especially when there already has been considerable 
roughening with noticeable l o s s  of weight. In connection with the phenom- 
enon of cavitation, a more thorough knowledge concerning t h e  raschanical 
s t resses  which accompany the high deformation veloci t ies  (6) would be 
highly desirable.  The p las t ic  deformations shown i n  Figures 13'*,9.nd U, are 
quite impressive. In Figure 13 we see a macrodeformation of a rowd . 
cylindrical t e s t  body of nonannealed malleable iron which was placed in to  
the high pressure diffuser a t  t h e  Schwarzenbach plant, while i n  Figure If+ 
we see a character is t ic  center of destruction i n  a cayitated lead spechen. 

4. 

.'Ln t he  attempt t o  classify the  cavitatian effects, one of the f i r s t  
d i f f i c u l t i e s  a r i ses  when we compare the  l o s s  of volme through wear vltith ' 

the physical properties of the na ter ia ls .  The metallic materials inves- 
t igated by Mousson (36)  were low- and high-alloy s teels ,  s ta in less  s teels ,  
surface t rea ted  s teels ,  aluminum alloys, and nonferrous al loys such as 
bronzes, brasses, and s t e l l i t e .  The comparable measure of the quality of 
the t e s t  'bodies was the volume l o s s  a f t e r  16  hburs of cavitation. In the  
sense of the  so-called erosion which bears a close relatio113hip t o  the  . 
hardness of t h e  t e s t  material, ~ c h r 8 t m  arrived a t  a simple working theory 
which made the wear on the material  inverse1 proportional t o  i ts  hardness 
as  measured f ~ r  example by t h e  &inell test.' It appears logica l  et f i r s t  
tha t  t h e  cavitation stresses w e  produced by small l i qu id  pistons acting 
on many localized points. The re su l t s  obtained by Mousson and a lso  those 
obtained a t  Karlsruhe show tha t  the  relationship H AV = k is not invar- 
iable, even within a special group of metallic matepials. This is shown 
quite plainly @I t he  graphic representations of Figure 8 in which the  
weight l o s s  with respect t o  time i s  given. For cast i ron t h e  increaso i n  
hardness i s  accompanied by a clisproportionate increase in wear, f o r  carbon 
s t ee l  the re  i s  no marked change with increased hardness, while fo r  highly 
alloyed s t e e l s  there i s  considerable improvement t o  cavitation resistance 
with increased hardness. The relationship, however, holds t rue  for  the 
same material*which has been subjected t o  various heat treatments. For 
example, Mousscn found a f t e r  16  hours cavitation in  the  case of a stain- 

I l e s s  s t e e l  (12.25% C r ,  0.12% C, 0.45% k, 0.025% P, 0.40% Si, and 0.025% S) 
the following: 

Hardness HB l4.2 kg %B2; volume l o s s  46.7 id 
219 20.3 
285 8 -3 
401 3 -5 

*In Vater's drop impact t e s t s  the volume 1os.s :!:.&shed with an 
increase i n  hardness. Austentite s tee ls ,  however, lormed m exception. 



material  such a s  the crystal  grain, grain adhesion, sep&ation, etc,,' may 
be considered a s  having sohe bearing upon cavitation resistance rather  
than the col lect ive outer properties," On the  other hand there are  materi- 
als with but l i t t l e  difference in t h e i r  chemical composition and with about 
the same degree of hardness which, nevertheless, display a marked difference 
toward cavitation, A molybdenum s ee l  C 0,27%, Mn 0075%, Mo 0~52%) with b ( a Brben.harhass HB = 192 k g f i  has a 35 percent higher. l o s s  though 
cavi tat ion wear than a Ni-Cr-Mo s t e e l  (C O.Z8$, Mn 0 ~ 6 5 % ~  Ni 1.37%, 
Cr 0060%, Mo 0025%) with HB - 179 k g f i 2 9  both having about the same 
t ens i l e  strength, e l a s t i c  l i m i t ,  duct i l i ty ,  and s tretch a t  break, It is, 
therefore, not surprising t h a t  no relationship can be established between 
t ens i l e  strength or e l a s t i c  l imi t  and cavitation resistance except fo r  the 
special case of a cer tain metal which has undergone a different heat t reat-  
ment. This lack of relationship holds also f o r  maximum duc t i l i t y  or fo r  
elongation a t  break. Even ~ i t h  a respect t o  the s takic  energy there i s  no 
intimate connection. A Si-Ni-C+Cu s t e e l  with the following data: 
HB = 166 k g f i 2 ;  tensi le  strength rn 53 kghE2; elongation a t  break z 17 
percent i s  more - r e s f c t s t t o  cavi tat ion than a tempered high a l loy  s t ee l  
(~r-V-W) ai%n a Brinell  harcbess HB = 115 ks/-mm2, t e n s l l e  strength = 
152 kg/GZ2, and elongation a t  Bye& = 42. percent, The fact t h a t  there i s  a 
great diversi ty  in the requirements f o r  cavitation resistance i s  quite 
apparent. Even within similar groups of na%erials the  r e s u l t s  show volume 
losses which may be twice and sometimes seven three times as l a g e e  The 
strength t o  withstand cavitation is', theref ore,  mush more character is t ic  than 
the  ordinary strength properties, The causs f o r  t h i s  l ies-evident ly 3n the  
peculiar type of the stressing process which nust be a coupling phenomenon, 

The la rger  the  number of damaged places present o r  engendered, the  
more hreas subject t o  the primary process,* Th:is leads t o  an exponential 
dependency whereby the  quality of t h e  variaas mal;erials may be strongly 
different iated,  Mousson found a 16-hour loss  tht:ough wear of 3.,7 E-' in 
a s ta in less  s t e e l  with about l b p e r c e n t  chromium (HB ,: 182 kgm2, tens i le  
strength s= 84 kg/Ei2, elongation at break 37f1.1 while for one vdtn about 
12-percent chromium ( H ~  , 178 kgfi2, tens i le  stksngth = 60 kg,=2 . stretch 
a t  break = 74%) the loss  was 21, times a s  much. Since a simple proportional 
relationship does not adequately describe the ) , m e ,  a more precise analysis 
i s  possible only when the t o t a l  l o s s  of weip>%' with respect t o  time is 
known, In  order t o  characterf ze this cwre ,  t,vro terms are req&sd, pro- 
vided tha t  the interval  i s  not too dist.Ant, from the incubation period, One 
difficuJ.,ty a r i ses  i n  standardizing s ~ c h  n t e s t lng  p ~ o c e d w e  when there i s  
much l o s s  through wear; through strang mcrochanges of the surface the  
stream flow may be retarded, On tho a'chei.. hand the method of colmtug the 
points of damage under microscopic exa;m%ation i s  very t h e  consuming when 
the  cavi tat ion at tack i s  weak, It i s  therefore important. t o  use re la t ive ly  
small, l i g h t  t e s t  bodies k. order t o  determine exact weight losses, even 
when there  is but Little cavitation, 

*According t o  v .  Schyiarz and Mantel a high degree of hardness and cold 
forming properties a re  conducive t o  cavitation resistance, 

*Ely primary process is meant t h a t  mechanism vfhich i s  active at the  
collapse of the  vapor pocket which i s  located a t  the'  surface of the material,, 

I n 



carried out sandblast t e s t s  in which the effect-on vario$s-materials was 
investigated. While the  wear produced by t h i s  method i s  not analogous 
t o  t h a t  caused by cavitation, there i s  a cer tain s imilar i ty  i n  the 
destructive process.. It i s  clear  tha t  the  familiar properties such a s  
Brinell  'hardness and t ens i l e  strength determine the  resistance of a 
material t o  sandblasts . 

The characterist:Lc signs of the cavitation ef fec ts  can bo found 
in a l l  related water impact destructions, not only when examined q c r o -  
scopically but a l s o  when viewed microscopicttlly, Even before Schroter 
conducted his experiments with t h e  modified diffuser, &I which the  j e t  
of water impinged directly upon the  t e s t ,  plate,  Honegger (27), de HaUer 
(24) and l a t e r  v. Schwarz and Mantel ( 5 5 )  employed t h e  dropimpact 
apparatus i n  which the  t e s t  specimen which has been attached t o  a 
ro t~~-c ing  carr ier  cu ts  through a j e t  of  water of about 6 t o  8 mm cross 
eection with a high velocity (80 m/sec, 265 ft /sec o r  more), The type 
of damage obsemed and a lso  the weight l o s s  curves resemble those obtained 
in the  venturi tube (34). The same drop-bpact procedure was followed by 
Vater (65 and 66) and he, l i k e  Englesson, came t o  the  conclusion tha t  
cavitation resistance depended upon the strength of t h e  material. In 
t e s t  specimens which were a r t i f i c i a l l y  p i t ted  typical  signs of permanent 
fa i lure  could be observed. It was possible t o  oktain character is t ic  
curves for  various materials somewhat .like the  Wohler curves (in t h i s  case 
velocity w i t h  respect t o  the  number of impacts), Figure 1 5  shows these 
fo r  a number of s t ee l s .  In a spray-impact t e s t  on copper which las ted  
for  only one-thirtieth of a second, Vater (68)) on the  other hand, found 
dents with a depth of 0,07 am and a diameter of 0.2 mm. It i s  qui te  c lear  
tha t  in t h i s  case the s t r e s s  was not of any appreciable duration,* 

Ackeret and de Haller (5) developed an apparatus which also causes 
typical  cavitation. In this arrangement a.movable piston s t r ikes  a 
confined liquid which covers the t e s t  specimen, with a frequency of 1 6  
cycles per second. Figure 16 shows the groove jn a grey cast-iron speci- 
men before and a f t e r  60,000 impacts. I n  t h i s  the graphite layers a r e  
ent i rely washed out, Many of these destructions are  considered t o  be the  
ef fec ts  of genuine groove actions; there are ,  however, cases i n  which 
purposely made microgrooves are  again rol led together. A f ine  example of 
t h i s  i s  shown in Figure 17. 

The unique behavior of materials towards cavitation has made it 
impossible t o  determine t h e  required pressures which bring about the  
p las t ic  deformations through s t a t i c  o r  dynamic actions. This is of course 
not surprising. Using quartz crystals,  both de Haller and.E. Spannhake 
have attempted, unsuccessfully, t o  at ta in higher pressures through a 
multiple coupling mechanism i n  which the pressures a re  measured oscillc- 
graphically. Also in  the impifct apparatus of Ackeret and de Haller, there 
a r e  no pressures higher than  the hydraulic pressure. However, one must 

*According t o  the t e s t s  carried out by Vater (67) the cavitation 
attack in the dropimpact apparatus is a function not only of the veloci ty 
of the jet ,  but a l s o  of i t s  cross-sectional area. 



generally confined t o  an infinitesimal region, which accounts f o r  the  d i f f i -  
cu l t y  in making t h e  measurements, 

We sha l l ,  incidental ly ,  mention here of another experimen~ in which 
cha rac t e r i s t i c  cav i ta t ion  damage i s  brought about. If an air  bubble r e s t h g  
on an immersed wire i s  compressed by a pressure wave which is  induced in t h e  
l i q d d ,  then there  will be seen evidence of cavi ta t ion which i s  peculiar  t o  
water impact damage (48) a t  t h e  place where t h e  bubble had been, 

5 S, The per iodici ty  in cavi ta t ion 

The influence which t h e  number of i n d i v ~ d u a l  a t t acks  per unit  time has 
upon t h e  intensity of t h e  cavi ta t ion i s  self-evident, Cavitation a f f ec t s  
a r e  always specia l ly  pronounced in those regions where periodic ac t ion  takes 
place. I n  t he  impact apparatus they have a frequency of 10 cycles pe? second 
and i n  t h e  v e n t w i  tube frequencies of several  hundred c y ~ l e s  pe? second are 
not uncommon. Cavitation a t tacks  of great i n t e n s i t y  were obkained vdth 
o s c i l l a t o r s  i n  which t h e  frequencies run in t he  thousands, The periods fn 

I 

the  drop-impact. apparatus i s  governed by t h e  revolution of t h e  spec he^^' 
holder. It i s  cer ta in  t h a t  in a l l  the methods used, higher hormonics of 
g rea t  i n t e n s i t i e s  a r e  at times induced; this assumptiox1 i s  suggested espa- 
c i a l l y  in cavi ta t ion i n  t he  ven tur i  tube where i t  i s  impossible t o  analyze 
a wave spectrum within a confined range, 

The problem of cav i ta t ion  i s  resolved into a predomjnrvltly hydrodynamic 
question considering t he  motion of the f luid  pa r t i c l e s  as well a s  t he  vapor 
o r  gas bubbles and i n t o  t he  study of the  mater ia ls  destruction i t s e l f ,  In 
t h i s  manner the subject i s  considersd from two angles, cavi ta t ion attack and 
cav i ta t ion  resistance.  From oscil lographic film exposures i n  the  venturi  
tube experiment, t h e  rhythmic motion of t h e  vapor bubbles, t h e i r  collapse? 
disappearancz, and recreat ion can be observed t o  be in t h e  same periochc 
l n t e r v a l  as the  detachment of t h e  water column from t h e  narrowest cross 
sec t ion  of the tube,  In  t h e  o sc i l l a to r  the  same course 1s followsd, strong 
bubble formation, vaporization and recondensation; a l s o  high and especial ly  
l a r g e  accelerations in the motion of the  f l u d  enter  into t he  p i . c t u ~ e ~ ~  
Euel ler  (37) i n  h i s  "Slow motion pic tures  of a c a n t a t i n g  a i r fo i l , t J  
d e f i n i t e l y  proved t h e  existence of collapsing vapor bubbles, The calculated 
impact times are  somewhere near 0,0033 seconds, 

In 1932, a paper by Gaines (22) reported an appargGus which was able  
t o  induce strong and character is tdc  cavltaiaon ac t ion  It had t h e  advan- 
",ge t h a t  it reauired but l i t t l e  povrer and t h a t  it could be sonvenlently 

I1  
Wott inger  a lso ,  a s  ea r ly  a s  1932, cal led attention t o  cavi.Latlon 

':I:{ means of ul t rasonic  waves, 



.- 
magnetostriction of a n icke l  rod in  a changing f i e l d .  The phenomenon of 
magnetostriction, discovered by Joule, was f i r s t  used, especial ly  by Pierce, 
as a sonic o sc i l l a to r .  A self-excit ing e lectron tube was connected with 
the  rod which served a s  t he  wave t ransmit ter .  In  t h e i r  var ied arrangements; 

\ 

these o sc i l l a to r s  have i n  recent tinles found numerous applications i n  the  
f i e l d  of ul t rasonics .  (see reference (10). ) Besides pure nickel, there  - 
are nicke l  a l loys ,  invar,  and monel metal with a t r ace  of i r on  or  silica 
which are  su i tab le  f o r  t h i s  purpose. In order t o  obtain t he  required high 
frequencies (100 kilocycles and higher), Pierce, Kallmayer, and other  . 
invest igators  have used spec ia l  ty-pes of rods. I n  Gaines' arrangement a 
changing magnetic f i e l d  of some 9 kilocycles i s  a t ta ined,  The n icke l  tube 
about 25 cm long, e x i t e d  longitudinally,  has one end oschl la t ing i n  the  
Liquid. A 250-watt t ransmit t ing valve acts i n  reverse ( ~ u c k k o ~ ~ l u n g )  
through the  magnetostriction e f f ec t .  Figure 18 shows t h e  fundamental 
arrangement. Our o m  experiments were car r ied  out with an apparatus t h a t  
had some improved features ;  it i s  seen in Figure 19, together with t h e  meas- 
uring microscope. The changing f i e l d  or iginates  in  t h e  e l e c t r i c  o sc i l l a t i ng  . 
c i r c u i t  and is  formed by t h e  o s c i l l a t o r  c o i l  L, and t h e  condensers C1 
and C2 (Figure 18). Synchronization i s  effected when the  o sc i l l a t i ng  
c i r c u i t  works on a frequency of 9 kilocycles which corresponds 'to a rod 

r=- 

length (tube length) of 26.2 cm. (L = - f where L i s  t h e  tube 2 ' 4  

length, f t he  frequency, E t he  e l a s t i c  modulus, and p t h e  densi ty  
of t he  mater ia l  of tht? tube. ) A 400-watt t ransmit ter  tube forms a regulat- . # 

# 

ing mechanism f r e e  of i n e r t i a .  A direct-current generator supplied 
d i r ec t l y  t h e  required voltage of from 2,000 t o  3,000 vol t s .  I f  one i s  not 
available,  then the  direct-current  i s  obtained through a high-voltage trans- 
fomer  T connected with two mercury vapor r e c t i f i e r s  f o r  which T2 i s  the  
necessary heat  transformer. This i s  shown schematically i n  Figure 18. The 
pulsating direct-current  i s  then evened out through the  condensers C3 and 
the  valves L3. Transformer T3 furnishes the  heat f o r  t h e  t ransmit t ing 

I valve. The induced voltage change in c o i l  L2 furnishes the  regulating 
impulse t o  the  grid.  With the  a i d  of res i s tance  R1, t he  most favorable 
point w i t h i n  t h e  s t r a i g h t  par t  of t h e  charac te r i s t i c  curve f o r  t he  tube may 
be obtained. In order t o  have l a rge r  amplitudes without doubling t h e  
frequency, it is advantageous t o  premagnetize the  yoke by a direct-current 
f i e l d  while t h e  directanode current  is  permitted t o  flow across t h e  o sc i l l a t -  
' ing c o i l .  The yoke-shaped o s c i l l a t o r  frame we used i s  schematically given i n  

I Figure 20. The knife-edged clamps fo r  t h e  rod a re  here replaced by a sphere- 
l i k e  clamping s h e l l  which permitted a rapid exchange of the  t e s t  specimen 
without throwing the  o sc i l l a to r  rod out of adjustment. 

Between t h e  o sc i l l a to r  c o i l  and t h e  clamping s h e l l  there  is a 
protecting r ing about 10 rnm wide t o  prevent the  flow of s t r ay  currents  from 
the lower par t  of t h e  c o i l  t o  t h e  tube clamp, par t ly  avoiding the  heating q 

of the clamp. 

For a sa t i s fac tory  performance adequate cooling i s  necessary. The 

1 nickel  tube a s  we l l  as t n e  o sc i l l a to r  c o i l  became exceedingly warm during 



along tha t  pa r t  which i s  taken up by t h e  co i l s .  This permit.s t h e  passage 
of a i r  currents.  Water coolfng was occasionally t r i e d  by simply closing 
the  tube with adhesive tape ,  Permitting t h s  cold water t o  ent,er a t  t he  t op  
and syphoning it from the bottom makes l i k e l y  a water column of variable.  
height which dls turbs  the  steadiness of t he  frequency. In order t o  get 
around t h i s  d i f f i cu l ty ,  Gaines fastened h i s  t e s t  body a t  tne upper end of .. 
t he  o sc i l l a t i ng  tube. The water forced i n t o  t h e  tube from below dld not 
change t h e  resonance, This necessitated,  however, paeking t h e  tube  against  - 
t h e  l o s s  of t h e  l i qu id  used i n  t h e  experiment, It was found t h a t  a s tab le  
frequency could be maintained by boring ou t l e t  holes d i r ec t l y  above rhe 
lower end of t h e  tube thxlough which t h e  cooling water was allowed t c  escape. 
In t h a t  case t h e  inner .face of t he  tes t .  bodies had a conical s h s p .  (see 
Figure 22.) 

An e f fec t ive  cooling was obtained by means of dry ice, A% 5-rninute 
i n t e rva l s  l i t t l e  pieces were dropped i n t o  t he  tube, The c a ~ b o n l c  acid 
vapors escaping through t h e  slit. of t h e  tube  coolod t h e  o s s i l l a t a r  c o ~ l .  
No i r r e g u l a r i t i e s  i n  the  frequerlcy vrere observed, 

The shape of t h e  t e s t  bodies and t h e  manner of t h e i r  attachment to 
t h e  o s c i l l a t i n g  tube presented a problem, Its solut ion depsnded on the  
determination of t he  influence which t h e  weight of t h e  specimen had upon . 
t h e  frequency of t he  o s c i l l a t o r  tube, Figure 21 shows t h i s  iafl.uence 
graphically,  The shapes of somc of t h e  t e s t ,  bodies used can be seen in 
Figure 22; a s  f a r  a s  possible they were made of Ugh5 metals.. The tesr .  
bodies used in the  weight.-loss experiments were made especially mail and 
fastened onto t he  tube by an a l d u m  bushing, We noted thax a f au l ty  
attachment of t h e  test. spscimens a t  t.imes caused .*regularltles in t.he 
f~equency  and that. test.  bodies whizh a r e  cracked within wece out, of 
harmony with t h e  rod frequency due t o  strong damping, Ths amplitude i s  
measured i n d i r e c t l y  by e l e c t r i c a l  means, A c o i l  of 109 turns a t  tht! f r ee  
end of the  o sc i l l a t i ng  tube fnduces voltages tha t  ind~cat lqre  of t he  
amplitudes, After a microscopic ca l ib ra t ion  f o r  d e f i n ~ t e  amplit-~dea 
(from 0.01 t o  about 0.39 mm), a precise determination i s  poss1b1.e~ Pro- 
t e c t i o n  i s  provided against  t h e  part of t h e  apparatus carrymg b g h  
vol t  age, 

7.  Cavitation produced by ulkrasonic o s a l l a t  o r  

The 'expex.iments by Gaines (22) and l a t e r  those by Schumb, Peters, 
and h!.!illigan (54) as well a s  t h o s e  by Kerr (32) already pointed t o  the  
correspondence between the  type of destructLon produced by the  o sc i l l a to r  
and the  cav i ta t lvn  dimage appearing m the  ventur i  tube,, The curves in 
Figwe 23, taken from t he  work by Kerr, show t h e  welg'nt...loss re la t lonshiy 
i n  mg for periods t o  120 minutes f o r  brass,  cas t  xron, colci-ro1,ied steel, 
and stainless s t e e l ,  Kerr a l s o  compared the  reslutsnce t o  cavitation f o r  
various metals which had been s S  jected t o  cavitation m the hfgh frequency 
o s c i l l a t o r  and a l so  i n  the ventusi tube. 



t he  re la t ionship of cavitat ion i n t ens i t y  t o  stat i ~ - ' ~ r e s s u r e  f o r  various 
water temperatures, using brass t e s t  specimens. The r e s u l t s  of t h e i r  
invest igat ion =e shown i n  Figure 24. For atmospheric pressure p = 1 
atmosphere t he  curve giving t h e  l o s s  of weight shows a rnaxhum between 
55' and 70' C f o r  water. Near t he  boi l ing p o h t  any at tack by cavita- 
t i o n  vanishes. ' 

For a pressure p = 2.4 atmospheres there  is some sh i f t i ng  fo r  t h e  
maximum and f o r  p = 3.1 atmospheres, t he  m a h u m  l i e s  obviously beyond 
100' C. The behavior a t  t he  pressure p = 2.0 atmospheres i s  e n t i r e l y  * 

unexplainah3.e. From these  t e s t s  the  authors obtained expreseions f o r  
V, and F,, where V, i s  equal t o  a reduced volume loas,  while p, 
corresponds t o  a reduced absolute pressure: 

AV and 
P - Ps 

Vr = - 3 Pr = 
f a  P (fa)2 

;- 

A i s  t h e  volume l o s s  fo r  each vibrat ion per volume a3, where a i s  
the  amplitude; P i s  t h e  density of t h e  l iqu id .  In connection with t h i s ,  
there  ex i s t s  the  funct ional  re la t ionship Vr ; ~ ( p , ) .  The reduced - 
volume l o s s  i s  small f o r  pr = 0 o r  fo r  very l a rge  values of pr; between .. 
these,  there  i s  t he  grea tes t  cavi ta t ion destruction.  . , f 

Of the  various t e s t i n g  arranpents-venturi  tube, dropimpact 
apparatus, and oscillator-the o s c i l l a t o r  requires  considerably l e s s  energy 
than the  others. There i s  a fu r the r  advantage; cavita%ion i s  brought about 
very quickly and consequectly more observations a r e  possible f o r  the  study 
of t h e  cav i ta t ion  process, From the  few experinients which have been made 
it i s  qu i te  evident t h a t  the  properties of the  l i qu id  such as vapor pres- 

I sure and the  absorbed gas play a considerable pa r t  in the process. The 
question of t he  vapor bubble formation, which always a r i s e s  in connection 
with t h e  ph6nomenon of cavi ta t ion,  may be studied here by d i r e c t  observation. 
Any desired liquid may be employed; it i s  possible t o  change t h e  vapor 
pressure, surface tension and v i scos i ty  t o  f ind out the  nature of t he  pr i -  
mary process of t he  cav i ta t ion  a t tack and thereby a r r i ve  a t  some va l id  . 
general  ru les  whish w i l l  a id  in t h e  selection of a mater ia ls  t e s t i n g  
procedure, Furthermore, it permits an observation of t he  mater ia l  during 
t he  so-called incubation period and a f t e r  t h e  completion of t h e  experiment 
co t  only t he  t e s t  specimen but a l so  any detached pieces m y  be separate ly  .s."" 
examined. To a r r i ve  a t  a technical ly  va l id  standard concerning cavi ta t ion 
res is tance,  one must ascer ta in  t h e  degree of the  mechanical and chemical . 
influence, whether constant s t resses  play a r o l e  o r  whether there  i s  within 
t he  c rys t a l  i t s e l f  a damping of t h e  vibrat ing pa r t s  of su f f i c i en t  magnitude 
t o  have any e f f e c t ,  

*Private report  t o  Prof. 1'1. S~annhake. 



the  relationship of cavitation in tens i ty  t o  s t a t i c  'pressure fo r  various wk 
water temperatures, using brass t e s t  specimens. The re su l t s  of t h e i r  .f 

investigation a r e  shown Pn Figure 24. For atmospheric pressure p = 1 
atmosphere the curve &ving the  l o s s  of weight shows a maximum between 9 

55' and 70' C f o r  water. Near the boiling point any attack by cavita- 
t ion  vanishes, 

For a pressure p = 2.4 atmospheres there is some shi f t ing  for  the  
maximum and fo r  p = 3.1 atmospheres, the maximum l i e s  obviously 'beyond 
100' C. The behavior at  the pressure p = 2.0 atmospheres i s  ent i re ly  - 
unexplainable, From these t e s t s  the  authors ob tahed  expressions f o r  
Vr and , where Vr i s  equal t o  a reduced volume loss,  while pr 
corresponds t o  a reduced absolute pressure: 

AV and 
P - Pa 

Vr = - 
3 Pr = 

f a  P (fa)* 

I AV i s  the  volume l o s s  fo r  each vibration per volume a3, where a is  
the amplitude; P i s  t h e  density of the  liquid. In connection with th i s ,  

I there exists the function?-1 relationship Vr = ~ ( q )  . The reduced .! 
volume loss  i s  small f o r  pr = 0 or  fo r  very la rge  values of pr; betwem . 
these, there i s  the  greatest  cavitation destruction. . I 

.r 

Of the various tes t ing  arrangments-venturi tube, dropimpact 
apparatus, and oscillator-the osc i l la tor  requires considerably l e s s  energy 
than the others. There i s  a fur ther  advantage; cavitation is  brought about 
very quickly and consequently more observations are possible f o r  the study 
of the  cavitation process, Fromthe few experiments which have been made 
it i s  q ~ i t s  evident tha t  the properties of the l i q u i d  such a s  vapor pres- 

I sure and the absorbed gas play a considerable part  in the process. The 
question of the vapor bubble formation, which always ar i ses  i n  connection 
with the  phekomenon of cavitation, may be studied here by d i rec t  observation. 
Any desired l iquid  may be employed; it is  possible t o  change the vapor 
pressure, surface tension and viscosity t o  find out the nature of the  pri-- 
nary process of the cavitation attack and thereby ar r ive  a t  some val id . 
general rules which w i l l  aid in t h e  selection of a materials t e s t ing  

1 proced-we. Furthermore, it permits an observation of the material during 
the so-called incubation period and a f t e r  the  completion of the  experiment 
not only the t e s t  specimen but a l so  any detached pieces may be separately 

,@?" * 

examined. To arr ive a t  a technically val id standard concerning cavitation 
resistance,.one must ascertnin the degree of the mechanical and c h d c a l  4 

influence, whether constant stresses play a ro le  or whether there i a  within 
the  crys ta l  i t s e l f  a damping of the vibrating par ts  of suff icient  magnitude 
t o  have any effect .  i 

?Private report t o  Prof. 1Y. Spannhake. 



Although valuable information i s  obtained by a macroscopic; examination 
' 

of t e s t  specimens which had been' exposed t o  cavi ta t ion and which a r e  ground 
and polished, a microscopic invest igat ion a s  fif,roduced by Englesson (19) 
and Bbttcher (14) affords  much addi t ional  valuable data. Yticrostructural 
invest igat ions  car r ied  out with t he  a id  of X-ray interferometers should 
give information concerning changes i n  cleavage of t he  c rys t a l  grains or  
t h e  change in bondage as the  pesult  of eavii;ation. The superimposed forced 
v ibra t ion  causes t h e  t e s t  specinen t o  f o m  nodal l i n e s  and vibrat ion bulges 
which na tura l ly  depend upon t h e  shape of t h e  spechen  and t o  a l e s s e r  extent 
upon th.e manner in which it i s clamped, Therefore, the  proper preparation 
of the  t e s t  specimen i s  of importance. Figure 25, from Gaines, shows such 
l i ne s ,  and Figure 26 i l l u s t r a t e s  a kidney -s h a p, ed t e s t  body in which t h e  
major damage occurred upon the  curved portion, In some veyy b r i t t l e  mate- 
ria1.s we observed t h a t  the  t e s t  specimen v ibra tes  but l i t t i e  o r  not a t  all, 
and consequently there  i s  no cavi ta t ion damage when there  a re  i n t e r n a l  
f rac tures  t o  begin w i t h  or; if such be caused by t h e  ~ i b r a t f o n ~  In this case 
we dea l  with t yp i ca l  damping phenomena of v i b r a s h g  mater5als which are used 
in modern mater ia ls  t e s t i ng  f o r  t he  deiiection of haircracks, blowholes, and 
other defec t s  . 

Much c=e must be exercised in t he  preparation of t he  test specimens 
with respect t o  shape, clampirig* and weight L? order t o  have a st.andardized. 
t e s t i n g  procedure so t h a t  proper comparisonzi are possible,  Hithrtrto t h e  
l o s s  of vo l iae  has served as a measure of the cavi ta t ion  intensity which i s  
determined by the  difference in weight, Another successful method by which 
cavi ta t ion a t tacks  may be evaluated, especialdy those o f  mall, b t e n s i l y ,  i s  
by counting and measuring t he  individual  p0int.s of damage in t h e  mtcroecope. 
Although time consumfig, t h i s  procedure i s  better than thak of t h e  polume- 
l o s s  method. In aluminum, f o r  example t he re  a r e  crater--l&e formations 
which a re  due t o  cavi ta t ion (Figure 27j. Such haterials shew at, times but 
l i t t l e  l o s s  of wefght, which might l ead  t o  the  belief thar. t he re  i r s  no cav2- 
tcttion a t tack  and t h a t  t he  mater ia l  has a high csavltation r.eszst.anee. I n  
t e s t s  with aluminun bodies in which la rge  amplitudes wqra used, a regular 
atonization was observed, whereby the  articles r a n i n g  in suspension were 
qu i te  uniform and of t h e  order of 10-5 cm. I n  general, however, t h e  
cavi ta t ion e f f ec t s  a r e  of a pit-like nature so t h a t  t he  1.03s of w l m e  i s  a 
measwe of t h e  cav i ta t ion  damage, When t h e  operakion periods a r e  prolonged 
there  ia, without doubt, a change in t h e  vibratory conditjnn, due t o  t h e  
l o s s  in volume. This might explain why the re  is somethes a diminishing 
l o s s  in weight a f t e r  there  has been a very considerable destruction of the 
mater ia l  . 

Tne quant i ta t ive  evaluation of t h e  waight losa w i t h  respect  t o  time 
f o r  a magnesium t e s t  body vrhich had been subjected t o  cavi ta t ion in water 
1s represented in Figure 28, Thia curve a l so  permit8 a separaiition into two 

' 
*According t o  Beuthe (11) t h e  vapor pocket formation takes place in 

the v ibra t iona l  z res ta  and not in the  nodal lines., 
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(incubation period) and tha t  pa& of the curve i n  which the weight l o s s  
follows very much a straight-line course. In the osc i l la tor  experiment we 
found the break in the volume l o s s  (weight loss)  t o  be quite abrupt; t h i s  
was a lso  character is t ic  of the recently published time-weight loss  curves 
by Kerr (Figure 23). 

I n  the osc i l la tor  t e s t s ,  t he  incubation period i s  a matter of minutes. 
If in our apparatus we roughly f igure on a 10-minute period for  i ron and 
s t e e l s  then we have up t o  the beginning of actual  destruction about 6 x LO 
impacts. In the venturi tube a t  the Schwarzenbach plant the time required 
was about 8 hours. The je t  frequency computed by E. Spannhake 's formula 
equals about 300 cycles per second, indicating tha t  there are  from 8 x 10 
t o  9 x lo6 impacts. This shows a remarkable correspondence between these 
ent i re ly  different tes t ing  procedures, t he  venturi tube and the high 
frequency oscfllator.  In the dropimpact experiments carried out by 
v. Schvrarz and coworkers t e f i r s t  strong attacks on s tee ls  were noted 
a f t e r  1 x 106 t o  3 x log impacts. 

A large number of t e s t s  a re  necessary since there. a re  considerable 
deviations of weight losses, especially with larger  amplitudes. In 
Figure 29 the weight losses in aluminum specimens subjected t o  cavitation 
in water a t  room temperature a r e  plotted as  a function of t h e  amplitude. 
This shows not only tha t  the curve rises rapidly when the  induced voltage 
i s  greater than 30V (correspondihg t o  an amplitude of 0.05 mm) but a l so  
tha t  average errors  amounting t o  60 percent a re  possible. On f i r s t  
thought, t h i s  appears t o  l imit  the  usefulness of the  procedure somewhat, 
but we are reassured when we consider tha t  the deviations of cavitation 
resistance for  individual materials are  no greater than those encountered 
i n  tes t ing  fo r  t ens i l e  strength, Brinell  hardness, or  other mechanical 
properties. 

For purposes of comparison we give the r e l a t ive  ra t ios  of the  volume 
loss  fo r  several materials fo r  a given time lying beyond the maximum incu- 
bation period: 

Drawn ~r-MO-st e e l  
Alluminum Tempered s t e e l  ' (1.1% Cr; 0.5% Mo; 
al loys Cast iron (0.33% C) 1.378 h) 

CAVITATION ATTACK 

The vapor pocket formation a t  the boundary s2nface 

'tihen pressure regions exist, fo r  example, in a venturi tube, which 
approach the pressures of the water vapor and when the  hollow pockets 
formed thereby collapse, it is  certain tha t  damage w i l l  r e su l t .  Our study 
deals with vapor fcmation and recondensation, the same a s  i n  bubble and 
foam formation. 



tube i s  immersed i n t o  t h e  l i qu id  - t o  a depth of about 1 mrn. If t he  t e s t i n g  
period extends over any length o f '  time, t h e  immersion depth needa t o  be 
watched as there  i s , a cce l e r a t ed  vaporfzatfon. 

What a r e  t h e  s teps  through which cavi ta t ion proceeds in t h e  o sc i l l a to r  
and how does t h e  damage appear t o  the  eye? The primary purpose of t h i s  
experiment was t o  find a d i r ec t  connection between vapor pocket fdrmation 
and cavitat ion erosion, In  t h e  o s c i l l a t o r  the  vapor bubbles and t h e i r  
motion could be followed qui te  eas i ly .  The photography of the vapor pocket 
formation was  effected with t h e  a i d  of a reflecting mirror, bhe contzfner 
holding the l i q u i d  being a very f l a t  bowl, Figures 30 t o  34 give viewa 
from below against t h e  pis ton surface of bubble formations f o r  various 
l i qu ids  such a s  benzol, glycerin, paraffin oil,. and water a t  room tempera- 
t u r e  and a t  80° C, In order t o  determine the  direct. connection between the  
distance s e p a ~ a t i n g  the  locatilan of pocket formation a d  of t he  cavi ta t ion 
a t tack,  t h e  camera exposures were made from below which in e f f ec t  gave a 
t op  view. S t ee l  t e s t  specimens were found very su i tab le  f o r  this purpose, 
t h e i r  high cavi ta t ion resistance preventing noticeably the re t roac t ion  upon 
t h e  vapor fornation and recondensaticr, d u r h g  t h e  time of camera exposure, 
T h i s  i s  due t o  t h e  roughened and s t ressed  9 face of the  t e s t  sample, 
Figures 35 and 36 a re  exposures of bests  ea* ~ s d  out with two d i f fe ren t  
frequencies; they show c l ea r ly  t h a t  foam fe s t i o n  increases with higher 
frequencies. The vapor bubbles tend t o  co l lec t  along separated l i n e s  and 
in t h e  case of low water temperatures cause t h e  grea tes t  damage m t h e  
center  of t h e  tees t  piece, a s  we v r F U  sh"ow later, The l i g h t  surface in t he  
center of Figures 30 and 36 represents a comparat,ively large vapor bubble 
of about 1/2 mm in diameter, Whether t h i s  is the  same bubble o r  whethep iCV 
is  an ever newly created bubble by t h e  rhythmic frequency cannot be observed 
visual ly ,  As yet it has not been possible t o  f i l m  cinematographicmy any- 
th ing with a frequency a s  l a rge  a s  t h a t  of t h e  osc i l l a to r .  However, we 
Paow t h a t  t he  la rger  bubble has "a definike l i f e  span,." The midence f o r  
t h i s  i s  t h e  ever new formation of Bubbles of about t h e  same di.ame~er'which 
remain v i s ib l e  fo r  awhile before they coUapse, Almost immediately after 
t h e  collapse of the first bubbles a microscopic invest igat ion shows strong 
mater ia ls  a t tack at t h e  point  of collapse,  With water .a t  higher tempera- 
tures t he  diameter of the  bubbles is  smaller, 

A comparison of Figme 30 with Figure 33 shows, furthermore, t h a t  h 
t h e  case of hot water the  bubbles spread from the  center  over t h e  e n t i r e  
upper surface. They a r e  here about the same s i z e  a s  those formed in benzol 
o r  g l y c e r h .  In glycerin they form a honeycombed closed space beneath t h e  
t e s t  specimen, The developnenk of these aftex. one fou r th  and one-half 
second are shown in  Figures 37a and 37b. In contrast  t o  t h e  l ight ,  surface 
in Figures 30 and 36 there  i s  no la rge  single bubble. Within t h i s  honey- 
combed space a so r t  of bubble ray ( ~ l h c h e n s t r a h l )  is  always in motion 
beginning a t  t h e  midpoint of the  test.  p iece ,  going i n t o  t he  f l u i d  arid 

ecurning l a t e r a l l y  t o  t he  t e s t  specimen, Paraffin oil as a oav%tation 
medfum gives r i s e  t o  a similar phenomenon? The difference fn cavitation 
erosion in various l i qu ids  comes from t h e  dist;ribu%ion of the -mitlts of 
d c a c k  and i n  t he  strength, depending upon the  stremi flow of t he  liquid, 
LY  he case of s l i g h t l y  viscous f luxds,  such as water and benzol, a 



wall of the  vessel where numerous bubbles a re  deposited. It i s  clear  tha t  
such properties a s  surface tension, vapor. pressure, and viscosity, which in 
turn depend upon temperature and pressure, determine the mechanism of t h e  
bubble fornation and the  collapse of the f a s t  holding vapor or  gas bubbles. 

10, Damage b rou~h t  about in water and aqueous solution8 e 

In t h e i r  cavitation investigations, Schmb, Peters, and M U g a n  . 
(54) used methyl. alcohol and carbon tetr8chloride besides water with the 
temperatures of the  l iquids  a s  the  variable. Their r e su l t s  show tha t  in 
the case of water the attack reaches a maximum at' about SO0 C; it becomes 
negligible as it approaches the boiling point. A s W a r  behavior waa 
noted also with carbon tetrachloride where the  maximum value i n  from 
250 t o  300 C. In  methyl alcohol, however, there'was a steady decrease of 
cavitation action' with r is ing temperatures. The authors then mentionsd the 
possible connection between the degree of destruction aPrd the outer pres- 
sure, o r  the vapor pressures, respectively, of the l iquids.  Homer,  they 
believed tha t  the r a t i o  of the vapor pressure t o  the outer p r e s w e ,  Ps -., 

I P 
was not the  most essent ial  factor.  (They found the  maximum value a t  

ps 
-N .) The wri ters  ascribed an important ro le  t o  the gas content. 

P -k 
For example, aluminum experienced a tenfold destruction i n  p a r t i a l  gas-free 
rrethyl alcohol over tha t  in gas-saturated methyl alcohol. Specimenls tes ted  
i n  water a t  room temperature always show the  f i r s t  and greatest  evidence of 
attack in a circular area about the  center of the t e s t  piece regardless of 
the  type of material used. Figures 38 t o  47 show the  destruction of aluminum 
i n  water w i t h  temperatures between 10' and 100' C. 

There i s  remarkable correspondence between the widening of the  foam 
formation a t  the surface and the region of destruction with an in 
temperature. A t  60' C the  foam formation i s  a r i ng  about t h e  midpoint which 
i s  hardly attacked. A t  70° C the  much weakened attack occurs within a 
broader concentric ring and a t  90' C the effect  of any strength ,is l o s t .  
If we r e c a l l  the corresponding pictures of the  stream formation we may see 
tha t  the damage i s  somewhat a repl ica of the vapor bubble formation. If 
the  vapor bubbles originate and vibrate mainly about the center, then it i s  
also ths re  tha t  the  strongest attack takes place, We, therefore, deduct the 
type of stream flow and cavitation attack from the  distribution and kind of 
damage t o  the t e s t  piece. 

For the precise temperature determination one elanent of a thermocouple 
was fastened t o  a hole in the locknut. The average of the  temperatures 
taken at t h e  locknut and the  bath, taken with an ordinary thermometer, was 
considered as  the t rue  temperature a t  the boundary surface. In  some of the  
t e s t s ,  marked by excessive temperature fluctuations, the cooling of the 
vibrating tube was found insufficient,  and t h e i r  resul t s  were not included 
in the tabulation. The comprehensive t e s t  ser ies  represented by Figures 38 
t o  47 show in  character is t ic  s teps the dependency upon the  temperature a t  



temperatures, t h e  damage, how eve^, being- confined t o  t h e  center-of the  t e s t  
piece, A t  60° - t o  70° C t he  inner seat  of destruction i s  vyidened u n t i l  
f i n a l l y  it takes on a ring-like form. The area of a t tack i s  more and more 
toward t he  sides,  t h e  i n t ens i t y  of the  damage becoming v i s ib ly  s rna l le~ ,  
A t  90' C t he re  i s  but l i t t l e  evidence of cavi ta t ion and at  t h e  boi l ing point 
there  i s  none. The concentrated a t tack is greater  a t  low than a t  high 
temperatures which may be due t he  s i ze  of the  vapor pocket; but the  t o t a l  
area  of a t tack increases with an increase i n  temperature (stronger bubble 
formation). . 

The disappearance of any damaging ac t ion  a s  the bo i l ing  point i s  
reached proves t h a t  cavj.tation i s  t i e d  up with t he  dual phase condition, 
The number of vapor bubbles is evidently connected with t h e  height of t h e  
vapor pressure in such a way t h a t  t he  bubble formation i s  stronger when t h e  
vapor pressure i s  high. Aside of t h e  surface tension, the  i n s t a b i l i t y  of a 
bubble i s  depenpnt  upon t h e  difference between t h e  outside pressure and the  
vapor pressure. 

With l i t t l e  or  no bubble formation, resu l t ing  from diminishing f l u i d  
cohesion, there  i s  no damaging action. This qua l i t a t ive  view of the 
mechanism of cavi ta t ion leads  t o  t h e  assumption t h a t  there  a re  two par t ic i -  
pating factors ,  namely, t he  number and t h e  s t a b i l i t y  of t h e  bubbles, It can 
ea s i l y  be seen why there  i s  a w h u m  value f o r  cavi ta t ion erosion between 
O0 and 100° C, a s  i s  shown in the  graph of Figwe 24, the  pressurs being- 
atmospharic. 

The quant i ta t ive  e f fec t  of cavi ta t ion an a magnesium t e s t  specimen 
was d e t e r a e d  by the  weight. loss .  The graph in Figure 48 gives t h i s  
in proportior t o t h e  temperature of t he  water, It might. be d a t e d  tha t  
t h i s  temperature dependency is val id  for  a;?, t he  mater ia ls  examined, 
regardless of t h e  type and mode of p r e p a r a t l ~ n .  Tests were carr ied out 
with brass, cadmium, s t ee l ,  magnesium, plexiglass, and other materials .  

Through the  roughening of the surface by cavitat ion,  the vaporization 
mechanism i s  somewhat altered,. depending on whethsr t.he w a l l s  a r e  smooth o r  
have micropoints, edges, or  p i t s ,  The manner of foam formation too gives 
r i s e  t o  smaller changes with t.ime, 

The solutions used a s  t e s t  mediums were d i l u t e  hydrochloric ac id  
(1/100 N) , potassium hydroxide (1/100 N), s a l t  solutions of various concen- 
t r a t i ons ,  &?d 30-percent hydrogen peroxide, There i s  but l i t t l e  difference 
i n  the foam and bubble formation from that. observed i w d i s t l l l e d  water o r  
common t a p  water. A s  i s  known, t h e  vapor pressures of di luted e lec t ro ly tes  
vary but l i t t l a  from those of the  pure solvents,  Consequently, one can 
expect a s imilar  bubble formation and a l s o  a airmiar type of cavi ta t ion . 
erosion, (see Figures 49, 50, and 51,) A marked chemical influence 

* 

*For s t a t i c  equilibrium of a bubble in l i q d d  the following expression 
. 2a i s  valid: pi ( )  p where pi i s  the  inner pressure, o t h e  sur- 

face  tension, r the  bubble radius, and p th'e outer ptEessu.e. 



specimens were used, Any possj.ble chemical corrosion damage was by far 
overshadowed by t h e  much greater  cav i ta t ion  destruction. Wesshall see 
l a t e r ,  however, t he  ro l e  which t h e  chemical behavior plays. The t o t a l  
weight l o s s  was here, also,  a nuzdmum a t  .about 50' C with a t e s t  period of 
10 minutes. The evidence t h a t  t h e  strength of t h e  a t tack  i s  a function of 
the  temperature i s  repeatedly brought out; this leads t o  t h e  conclusion 
t h a t  i n  t h e  main t he  a t tack by cav i ta t ion  i s  somehow dependent upon t h e  
physical condition of t h e  vaporized l i q u i d ,  

11. Damage brought about i n  organic l i qu ids  

To determine t h e  influence of t he  physical condition of t h e  medium 
upon the cav i ta t ion  of materials  we employed l iqu ids  which d i f f e r  markedly 
from aqueous solutions as t o  vapor pressure,  surface tension,  and viscosity.  
Since pure aluminum shows cavitat,ion e f f e c t s  in e reasonable time we used 
it f o r  t e s t  plrposes. 

The a t t acks  by benzin, benzol ('octane-nonane &we),  and e thy l  e ther  
a t  mom temperature a r e  pictured in  Figures 52, 53, and 54. From these  t h e  
remarkable correspondence with water at 20°, 60°, and 90' C i s  seen, perhaps 
not i n  t h e  s t rength of the  a t tack  but in t h e  area affected.  The vapor 
pressures f o r  water a t  these temperatures a r e  17, 150, and 525 mm, respect- 
ively. A t  26' C, which was t he  average t e s t i n g  temperature, t he  vapor 
pressures f o r  n-octane, benzol, and e thy l  e ther  are about 16, 100, and 
fjOO mm, respect ively .  It appears, therefore,  t h a t  the  t 4 p  and s t rength of 
the  cav i ta t ion  i s  determined by t h e  vapor pressure. In t h e  case of e ther  
no cavi ta t ion damage could be noted even a f t e r  a long exposure, only a 
s l igh t  e f f e c t  being v i s i b l e  through t h e  microscope. T h i s  resembles t h e  
cavi ta t ion a t tack  of vrater near t h e  bo i l ing  point. 

The t e s t s  were extended t o  include alcohols and benzines whose boi l ing 
points l i e  between 60° and 136' C. Figure 55 shows the  r e s u l t s  of a 
lO-nzinute exposure t o  cavitat ion of t he  aluminum specimens f o r  the  same 
osc i l l a t i ng  frequency in cyclohexane, n-heptane, n-octane, methyl, ethyl,  
and iso-amyl alcohol. Along t h e  abscissa  we haye instead of temperatures 
the  vapor pressures in mm Hg. Two f a c t s  a r e  apparent; t h a t  t he re  i s  almost 
complete correspondence in the  cav i ta t ion  a t tacks  f o r  various l i qu ids  with 
equal vapor pressure and t h a t  t h e  a t tacks  disappear as t h e  l i q u i d  approaches 
t he  boi l ing point .  Consequently t h e  hydrodynamic s t a t e  i s  only ind i rec t ly  
dependent upon t h e  temperature. In t h e  l i qu ids  used t h e  surface tension i n  
the  v i c i n i t y  of t h e  boi l ing point ranged between 12 and 18 dynes/cm. The 
disappearance of t h e  cavitat ion a t tack  a t  t h e  boil ing point furnishes proof 
t ha t  t h e  phenomenon of cavitat ion is  primarily connected with t h e  dual phase, 
liquid-vapor; a pure vapor cavi ta t ion i s  impossible since t h e  necessary 
mechanism f o r  t h e  formation and t h e  collapse of the  bubble i s  absent. To 
be sure, t h e  bubble formation near t he  boi l ing point (~,*p) i s  grea t ly  
enhanced by t h e  accelerated vaporization due t o  cavitat ion,  yet; these  v q o r  , 

bubbles are unstable aad lose  t h e i r  a b i l i t y  t o  hold f a s t  and t o  vibrate ,  
they simply puff o f f .  Through t h e  increased vaporization, these  bubbles 
and the foam formation a r e  forced away from t h e  center. Since on one hand 



other we have an impelling centr i fugal  force with increased vaporization, 
it i s  c lear  t h a t  in t h i s  case t he  most propit ious place fo r  a s tab le  
vibrating condition of t he  bubble foam i s  somewhere away from t h e  center. 
This explains t h e  ring-like destruction,  whose posit ion i s  dehemined 
p a r t l y  by t h e  oscil lat ing'frequency and pa r t l y  by the  vapor pressure. An 
important experiment on t h i s  phenomenon revealed t h e  remarkable s t a b i l i t y  
of the  v ibra t ing  gas bubbles. With t h e  a i d  of a piece of wire  a bubble 
about 1/2 mm in diameter was moved back and for th  over t h e  surface of the  
t e s t  specimen. The resu l tan t  damage covered a considerably enlarged area,  

The p r i m a q  reaction i s  a function; of the  mechanism of thp, bubble 
formation and of t he  vibrat ion of the  bubbles, To what extent  t he  forma- 
t i o n  i s  dependent upon the  magnitude of t he  surface i;snsion and. how much 
type of motion i s  re la ted  t o  such secondary conditions a s  viscosi ty ,  a r e  
problems which require a separate t,reatment., In addition the various 
mechanisms should be studied independently; in other words, when the re  i s  
a la rge  number of act ive  bubbles t o  what extent is t h e b  s t a b i l i t y  and 
t h e i r  a b i l i t y  t o  hold f a s t  governed by t h e  vapor pressure or by t h e  outer  
pressure, respectively? It appears t h a t  the  surface tension exePts l e s s  
influence upon the  a rea  of attack than  upoatshe size of the bubbles a s  
seen on comparb-g t he  damage done in water and benzol, Ir, the former t h e  
s t rength of t he  a t tack  i s  great.erg howeses, t h e  affect#ed a . ea  in eazh case 
i s  much t h e  same, We point t o  this, s h c e  t h e  primary reaction of water i s  
in i t s e l f  much s;ronger. The surface tensions of the two l i q u i d s  a re  72 and 
28 dynes/cm, respectively,  r h i l e  t h e i r  v i s cos i t i e s  are  not t oo  differen*, 
t h e i r  r a t i o  being 10 t o  7. 

However, i f  one examines c losely  an aluminum t e s t  piece cav-hated in 
castor  o i l ,  which has a viscosi ty  so much greater than t ha t  of water, one 
must assume t h a t  t he  development. of l a rge r  bubbles i s  hindered by %he 
strongly retarded flow. In glycerin t o o  the  slowly moving bubble cloud zs 
m a d i f f e r en t  hydrodynamic condition than t h e  bubbles in an eas l l y  flowing 
l iquid;  t h e  bubble stream i s  steered d i r ec t l y  through the  liquid, The 
durage shows most where t h e  bubbles adhere t h e  longest which i n  this case 
i s  a t  some dis tance from the  cencer of the test ,  piece (seqFj.gure 37)" 
Cast,or o i l  has a v i scos i ty  some X.n8C!0 times- tna.r, of 14-aser; in such f l u i d s  
the  s ta t ionary  bubble cloud has a s+,ream f l o w  sornevrha3 perpendicular t o  
t he  center, returning by a path tangent, ial ly t o  t he  upper surface vrhieh 
explains t h e  length of time t h e  cloud remains between %he center and t h e  
edge. In i h e  case of mercury act ing on magnesium %he behavior i s  
naturally much dif fermi . ,  t he  magnesium suffer ing a l o s s  of 1/2 z3 in 
almost half a second through exceptionally rapid amalgamation. 

On t h e  bas i s  of these  first considerat.ions w e  assume that. by 
changing t h e  temperature and pressure of the  varlous mediums w e  may a r r i v e  
a t  a separate treatment of t h e  primary react ion on one hand and its con- 
cornftant conditions on t he  other. \ 



We can see from the  foregoing that  the  damage i s  a d i rec t  r e f l e c t i o n  
of t h e  condition of flow or t he  formation of the  bubbles and tha t  t h e  
primary reaction is t i e d  up with t he  behavior and t he  properties of t h e  
momentarily at tached bubbles. Since the  surface tension i s  decisive as t o  
t h s  s t a b i l i t y  and t h e  viscosi ty  a s  well as t o  t h e  motion of the bubble, the  
determination of t he  causes of cz~vi ta t ion resolves i t s e l f  i n to  the  following 
investigations:  vapor pressure ( p ) ,  outer  pressure (p), surface ten- , 

aion (a), and v i scos i ty  (T). The question natural ly  a r i s e s  whether any ' 

fur ther  evidence could be cal led upon before t h e  acceptance of a mechanism 
of t h e  collapsing o r  compressing bubbles which accompany t h e  damage. On 
observing the  motion of t he  l i q u i d  during cavitat ion,  one may note a move- 
ment of the  bubbles across  the surface of t h e  test specimen, which a t  times 
becomes quite jumpy. This motion i s  seen eopecially in highly viscous 
l iqu ids ,  but i f  the  amplitude of t h e  vibrat ion i s  sllnall it can a l so  be 
found in l e s s  vfscous 1-iquids such as water. With a high-speed movie 
camera, we measured t h e  .velocit ies of these  bubblets, whose motion is  mainly 
away from the  center, and noted a speed of a few centimeters per second. 
Rreviously, Gaines took pictures  of such a bubble trail  in which t h e  vapor 
pocket vibrated "in resonance, " f irlding the re la t ionsh ip  

t o  hold t rue.  Here, d i s  the  bubble diameter, v t h e  veloci ty  of t h e  
bubble core (Blasenverkleinerung), and f is t h e  frequency. Vie were 
successful i n  observing microcavitation on ground and polished t e s t  
specimens which was d i r e c t l y  a t t r i bu t ab l e  t o  these vibrat ing vapor bubbles. 
Figures 56 t o  61 show enlargements of t h i s  microdamage on metals and non- 
metals. These unique damage paths can be explained by assuming t h a t  such a 
vapor bubble t r ave l s  along the  surface of  t h e  test piece wi th  a d e f i n i t e  
velocity,  expanding and contracting i n  unison with the  o sc i l l a to r ,  so  t h a t  
by every collapse a loca l ized  dest ruct ive  e f fec t  takes  place. The tan- 
gen t i a l  velocity may, 'therefore, be determined from t h e  distance between 
two neighboring dents when it i s  considered t h a t  t h i s  dis tance A s 
represents t he  path of one bubble dur-ing one v ibra t ion  period. We then  have 

where * T ~  is t h e  veloci ty  of t h e  bubble between the  surface limits and f 

i s  t h e  frequency of t h e  o sc i l l a to r .  If w e  measure t he  average A s  in 
Figure 57 a s  0.0003 cm (enlargement i s  380 times), w e  obtain a veloci ty  vt 
of a b c i t  3 cm/sec (f = 10,000 Hz or 10 ki locycles) ,  which i s  i n  harmony 
with t h e  observed bubble ve loc i t i es .  Similar paths of destruction were 
observed on specimens cavi ta ted in t h e  ven tur i  tube a t  the  Schwarzenbachwerk 
( ~ i ~ u r e  62). 



The r e s u l t s  obtained i n  t h e  previously mentioned experbent  s, car r ied  
out with hyperatmospheric pressures under various temperatures, can be 
explained i n  a simple manner by merely extending our assumption and by 
comparing these  r e s u l t s  with t h o s e  a t  low temperatures under standard 
pressure. Figures 63a t o  63c from t h e  work of Peters and Rightmire support 
our assumption as it concerns the strength and the  d i s t r i bu t ion  of the  
cavi ta t ion a t tack.  A spechen  cavitated a t  100' C at  an excess pressure 
of 1 atmosphere shows qu i t e  similar e f f ec t s  t o  one attacked a t  from 60' 
t o  70' C at standard pressure. Also the  e f f ec t  at 80' C and 1-atmosphere 
excess pressure correspond6 t o  t h a t  a t  room' temperature and normal pressure, 

In order t o  t e s t  our view thal, apparently there  i s  only t he  mutual 
dependency of outer pressure and vapor pressure vre car r ied  oua; cavi ta t ion 
experiments in water a t  room tcmperai;we (25O t o  27' C) vckh outer pressures 
below 760 mm Hg. Figure 64 i l l u s t r a t e s  t h e  experiinental arrangements, A 
g la s s  vesse l  t o  which an exhaust pump can be attached i s  fastsned t o  t h e  
o s c i l l a t i n g  tube and made a i d i g h t ,  with a rubber hose, Figure 65 shows r;he 
cav i ta t ion  effect  on aluminum t esC specimen with t h e  vapor pressure 
p, = 30 mm Hg and t h e  outer  pressures p a t  30, 250, 380, 500, 550, 600, 
650, and 760 mm Hg. For t h e  purpose of comparisonP rests a t  normal atmos- 
pheric pressure were a l s o  carr ied out t o  see i f  any differences could be 
detected due t o  the fastened osc i l l a to r  tube. As had been expected, no 
damage could be 'observed on t h e  t e s t  piece when t h e  outer pressure equalled 
30 mm Hg, even a f t e r  several  hows  of  t e s t i ng ,  The cav i ta t ion  damage a t  one- 
hal f  atmosphere corresponded somewhat t o  thas  between '70° and 80' C at  
standard pressure, Notice should be taken of t h e  dif ference in exposure t h e  
between these  t e s t s  and those represented by zhe s e r i e s  of Figures 38 t o  47- 
10 minutes a s  against 1 minute vri';.h, however, higher amplxtudes. The boi l ing 
points  of water a t  1/2, 1, and 2 atmospheres are 80°, 10oO, and 119~6' C. 
One can read i ly  see, therefore ,  t n a t  fo r  t h e  eavitat-,ion mechanism the  
difference p - ps plays a f a i r l y  deciding r o l e ,  The volume l o s s  f o r  
p - p, -,- 350 mm Hg i s  considerably l e s s  than f o r  p - p, 570, 620, and 
730 mm Hg. The rn-m value (reached when ps- 7 atmosphers o r  570 mm Hg 
and outer  pressure p equalled 1 atmosphere) 2 T i Z e h a t  l e s s  impressive 
here. I n  connection with these findings, a simple explanation can be given 
t o  t h e  r e s u l t s  obtained by ?et,er~s and-Rightmire in t h e i r  cavi ta t ion experi- 
ments vnth excess outer  pressure; since tho dual phase wi th  excess pressure 
extends f rom lo t o  120' C, t h e r e  i s  st.311 a considerable difference a t  go0 
o r  l 0 O 0  C between p and p,, necessary fo r  c a ~ i t a t ~ i o n  ac t l on ,  On the 
b a s i s  of t h e  rule  t h a t  when p p, z 0 there i s  no cavif,atlon damage, an 
explanation can be given why  the destruction does not take place in t h e  area 
of t h e  venturi tube where the  pressure equals t h e  vapor pressure,, but b e -  
d ia t e ly  behfnd this a rea  where the pressure i s  higher, Only if  there ex i s t s  
a dual  phase region ( l i qu id  and vapor) and at t h e  same tme a pressure 
difference p - ps = 0 can primary reactions take place t h a t  lead t o  the 
destruct ion of mater ia ls  (see Figure 2).  

From t h e  foregoing i t  is seen t h a t  t he  temperature fac tor  by l t s e l f  i s  
not  decisive in cavitatfprl act lon;  t he  emphasis must be placed upon the  
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cavitation t e s t s  were carried out with methanol, glycerin, and o i l s  a t -  
subatmospheric pressures which ent i re ly  substantiate t h i s  conclusion. 
For methanol with p = 380 mn Hg and p 160 mm, pract ical ly no 
damage could be noted a f t e r  10 minutes; fo r  glycerin with p = 380 and 
ps = 0.002 mm Hg considerable destruction took place but which, as  
expected, was l e s s  than tha t  for  p = 760 mm Hg. A s  a consequence of 
the very low vapor pressure of glycerin a feeble but discernible attack 
took place with p = 8 mm Hg. Viscous liquids such as  o i l s  show similar 
but much weaker damage when p = 380 mm Hg, p, being a t  about 0.01 mm Hg. 
Later we shall deal with the  *flu?nce of the gas content on this simple 
pressure relationship and the effect  of surface tension and viscosity >, 

part ly on the outer and part ly  on the  inner conditions of the main reaction 
in the bubble compression. In order t o  t e s t  the  va l id i ty  of the rolation- 
ship tha t  ex i s t s  between cavitation strength and vapor tension w e  tes ted  a 
ser ies  of l iquids  within which the  variat ion of surface tension (c) and 
viscosity (tl) was small (Table 2). 

Table 2 

Volume loss  in aluminum with Q 22 dynes/cm and 
r~ 2 6.6 x 10-3 gjcm sec. a f t e r  52 minutes for equal amplitudes 

Surface Viscosity Volume 
Density tension (n) Temper- Vapor 

(PI ( Q) g/cm sec. a ture pressure l o s s  
Liquid g/cm dynes/cm (poisea) (O C) (mm Hg) cm3) 

i-Amy1 alcohol 0.81 26 0.009 0 0.6 4.5 

Octane 0.70 22 0.006 15 9 4.8 

Hexane 0.66 20 0.004 0 46 5 02 

Methyl alcohol 0.79 23 0.007 20 96 4.3 

Athyl alcohol 0 79 20 0.008 40 140 6.7 

Cyclo hexane 0,78 24 0.007 40 180 7.4 

Cyclo hexane 0.78 22 0.006 50 280 4 e l  

Cyclo hexane 0.78 20 0.006 60 440 2 a 4  

Arbitrary - - - - 760 0 

Figure 66 shows the weight l o s s  as a function of t h e  time. The 
values are  somewhat scattered, par t ly  due t o  conversion t o  the same 
vibration anput-ide. But the character is t ic  path in Table 2 with the  
max5mum value in the v ic in i ty  of p, = 180 mm Hg f o r  p = 760 mm Hg 



rnm Hg, respectively, a m 23.5 and- 22 dynes/crn, respectively) fit 
nicely in to  the  above series, as do those fop ethyl ether a t  low 
temperatures; here the  weight loss  is but l i t t l e  l e s s  (a a 18 dynes/cm; 
the  viscosity i s  about one-half). We believe t h a t  the influence of the  
viscosity i s  l e s s  than tha t  of the surface tension, 

Table 3 a 

Volume loss  in aluminum a f t e r  10  minutes of cavitation 

tension l o s s  

----- 

a The dependency of the cavitation attack on the surface tension and 
the viscosity of the l iquid 

, A preliminary t e s t  was carried out with bubanol a t  400 C and water 
 a able 3) .  If one considers the  influence of T-J and the density p as  
being inconsequential and the volume loss  due t o  the influence of the  
surface tension alone, we have the graphic representation given in 
Figure 67 with ps-10 mm Hg. Thp values of the viscosities 'range between 
O.OO7 and 0.04 g/cm sec. The re su l t s  indicate t h a t  the surface tension 
is more responsible f o r  the  volume l o s s  than the  viscosity. This may 
be expressed: 

AV -a - k 2 ,  
That is, the strength of the primary reaction is linearly dependent* on the 
surface tension since the  released capillary energy i s  

A 4 n  rO2 dr0 * bubble radius before collapse), 

while the quadratic correction member refers  t o  t h e  outer condition which 
i s  s t i l l  quite important in the  primary reaction, even as viscosity and 
vapor pressure influence the vaporization and bubble formation, especially , 
in regard t o  t h e i r  numbers. If we convert the-volume loss  curve given in 
Figure 48 for  weter temperatures between O0 and 10Oo C, giving due regard 
t o  the  influence of the surface tension, the maximum value leads t o  some- 
nhzt higher vapor pressures. With t h i s  we gain a s t i l l  be t te r  view of the  
uniform course of the volume loss  curve as a function of the  vapor pressure. 



I different tes t ing  volume l o s s  as a function of timemay be , 
quite deceiving in evaluating the cavitation attack. As a matter of course 
i n i t i a l l y  strongly stressed t e s t  bodies become more strongly stressed with 
varying amplitudes, whereas weakly stressed t e s t  bodies have in the course 
of time a f l a t t e r  volume loss  curve even though the  incubation period may 
be the  same with the  same kind of t e s t ing  material. This must be considered 
in connection with the  time volume l o s s  curve, and tes t ing  time must exfend 
we l l  beyond t h i s  incubation period. 

Cavitation t e s t s  carried out with wat er-alcohol mixtures are revealing. 
There i s  but l i t t l e  difference in the v iscos i t ies  of the pure components 
and t h e i r  solutions. Figure 68 gives the  results,  in which the surfece 
tension as well  a s  the  p a r t i a l  pressures have been considered. With about 
7 percent alcohol there i s . t h e  greatest  volume l o s s  i n  aluminum t e s t  bodies. 
This los s  is governed by the  varying influence of p, and -0 .  With an 
increasing proportion of alcohol there  i s  an increase in the  vapor pressure 
p, and a decrease i n  the  surface tension . The greatest  changes occur in 
the region of small alcohol concentrations. From the steepness of AV with 
increasing ps i n  Figure 48 we conclude that  .the influence of the vapor ' 

pressure exceeds that of the surface tension, shown in Figure 67. Nith an 
increase i n  alcohol concentration, however, the surface tension drops much 
more rapidly a s  the vapor pressure increases. 

An evaluation a s  t o  the  influence of the viscosity i s  more d i f f i cu l t ,  
a s  viscous l iquids usually have very small vapor pressures. The volume l o s s  
vapor pressure curve shows, however, t he  differences t o  be s m a l l  i n  t h e  
volume l o s s  for  small vapor pressures, t h a t  is, for those below 1 mm Hg. 
Figure 69 gives the  resul t s  of the weight los s  in alumbum t e s t  pieces with 
respect t o  viscosity a s  w e l l  as saturation pressure for  glycerin-water 
mixtures of various concentrations a t  a temperature of 28O C. There i s  not 
much difference in  smface tension, 72 dynes/cm for water a s  against 
63.5 a3nes/cm for  glycerin. Near 70-percent glycerin the maximum i s  f la t -  
tened out. This is explained by t h e  effect  of the above mentioned vapor 
prezsure, while a r i se  in l o s s  with increasee g l y c e r h  content speaks f o r  a 
stronger attack with increased viscosity. The influence of t h e  viscosity 
upon the  cavitation strength is, however, cer tainly small: 

where k ' i s  very insignificant. In very viscous o i l s  there appears a 
notable sheen effect .  In this case the damage and surface tension are very 
amal l .  

15. The influence of the p;as content 

Cavitation t e s t s  with Varying gas content were f i r s t  ma$e by 
E. Spannhake (61) and l a t e r  by Numachi (a). Acgording t o  Battcher (14) 
the  gas content weakens, while according t o  Schroter (53) it strengthens 
cavitation action. The queation comes up h e d i a t e l y  in connection with 
the strength and type of danage a t  very-low vapor pressures, a s  there i s  



vaporization. In his observations of cavitation In  the venturf tube the 
f i r s t  author arrived a t  the view tha t  merely the pressure head p - p, 
i s  diminished by the s t r e s s  release through escaping a i r ,  Numachi proves 
the  influence of a i r  in water by changing the water pressure with the  
varying a i r  content so tha t  always a s l ight  cavitation was maintained. 
The derived cavitation coefficient K should, according t o  Numachf, be 
l inear ly  dependent upon the  r a t i o  a h , ,  where a i s  the air  content and 
a, i s  the  a i r  saturation: 

\ 

Pl i s  the saturation pressure of the dissolved air, pe the pressure 

a t  the  s t a r t  of cavitation and q, t he  s t a t i c  head of - the flowing water 
a t  the  beginning of cavitation. For values a/a, > 0.8 cavitation Ss 
brought about, there being no change when there i s  a t ransi t ion t o  air- 
oversaturated water.. In d i s t i l l e d  water there i s  but a trace.of a i r  and 
even a f t e r  a month a/a,  amounts t o  only 0.68. Schumb, Peters, and 
Milligan (54) found considerable difference in the  damage caused i n  
aluminum t e s t  pieces by ordinary and boiled methanol, However, our own 
comprehensive t e s t s  vdth water, methanol, ethanol, . etc., have shown that  
there i s  no very.marked difference in the  damage caused by d i s t u l e d  
l iquids and those which were a i r  saturated, Table 4 gives the weight 
losses  in aluminum exposed t o  cavitation action f o r  10  minutes, the  
amplitude being constant. 

Table 4 

Weight los s  i n  mg - aluminurn in water a t  25' C 

Dist i l led 
Tap water water Qi&.iUed water 

Tap Dist i l led boiled boiled Tap water boiled f o r  1 hr. 
water water fo r  1 hr. for  1 hr. t h  with a W  

- - - -- - . -- - -- -- -- 

*Air  was blown into l iquid below t e s t  specinen. 

I f  this behador were formulated in to  a rule,  then the gas content, would 
most l i ke ly  be considered a s  retarding cavitation, Stronger attacks on 
turbines during the summer when there i s  a diminished gas content sub- 
s t an t i a t e  t h i s  observation. The ai r  cont;ent in water f o r  various tern- 
peratures expressed a s  a (Bunsen s absorption eoefficienk) is:: 

Water 80 20° 40° 60° 800 100° 

a 0,029 0.019 0 . 0 ~  0.012 0 . 0 ~  0.011 



influence upon cavitation, althou,yh the  erosion a t  f i r s t  r i s e s  and 
then drops with gradually diminishing a i r ,  (corn r e  with character- 
i s t i c  weight (volume) loss-vapor pressure curire. P" Since the  nitrogen 
content of 0.002 g per l i t e r  water a t  180 C drops t o  0.001 g a t  620 C, 
the number of bubbles and the  cavitation damage r i s e  disproportionally. 
It follows somewhat the exponential course of the vapor pressure i n  tha t  
region where the influence upon the  tendency of the bubble film t o  
spread across the surface of t h e  t e s t  piece i s  as yet not so large. 
Table 4 shows tha t  with lesser  amounts of gas present greater damage 
results.  It is d i f f icu l t  t o  decide whether the  dissolved gas takes part 
direct ly i n  t h e  primary reaction or i s  more of an outside condition 
influencing the  number and type of singular erosions. However, we how 
tha t  the primary reactions which a re  connected with the  gas content a r e  
insignificant when compared with those of the  vapor pockets. 

Results obtained with mercury and glycerin are  important. Here the  
quantit ies of dissolved gas a re  insignificant.  Note the r e su l t s  observed 
when Liquids and fusions are  t reated with ultrasonic waves, quickly 
expelling a l l  t h e  gas ( k 9 ) .  Our experiments always showed the  same 
bubble formation and accelerated uapor i~at ion  regardless of the  amount o f  
air contained i n  the  liquid. Ackeret (2) previously demonstrated t h a t  
generally the  quanti t r  of the gases separated a re  insignificant as 
against the  freed vapors. The strong h iss  which always accompanies 
cavitation originates even a t  low temperatures (for example water a t  0' C) 
from an accelerated vaporization, Careful measurements give observable 
differences i n  llvaporizationN acco~ding t o  whether a l iquid takes part i n  
cavitation o r  not. One should, however, not assme t h a t  the  accelerated 
vaporization is a consequence of ordinary mechanical squirting of the  liquid. 
While t r ea t ing  u l t r a son ica l ly  liquid-gas systems such as benzol o r  water, 
Wood and Loomis (70) observed heavy fog formations even rrith o i l s  of low 
vola t i l i ty .  They put a drop of o i l  on the end of a thin-walled glass  tube 
connected t o  t he  ultrasonic transmitter and watched how the  o i l  spread over 
the  surface of t h e  glass and was.whirled away a s  f ine  fog. The o i l  does 
not run as a consequence of i t s  weiGt but remains i n  a s table  clinging 
condition. According t o  Bondy and S o l h e r  (12) the causes fo r  t h i s  behavior 
of the  fog formation are supposed t o  l i e  in the  cavitation, We observed a 
similar behavior, where in  an experiment a drop of glycerin was held f a s t  
a t  t he  osc i l la t ing  t e s t  body which was experiencing cavitation; the  drop of 
l iquid  spread over the surface of the  t e s t  piece and developed a symmetrical 
fog cloud. We f ind  tha t  in order t o  produce a character is t ic  at tack it is 
not necessary t o  have an outer l iquid surface f o r  impact purposes; t h e  pro- 
cedure takes place in a l iquid  fFkn which se t s  upon a vibrating base. 
Later we deal vrith what conclu3ion may be drawn from t h i s  as t o  the  process 
going on i n  a venturi tube. S o l h e r  showed (59 )  tha t  the fog formation due 
t o  ultrasonic waves upon l iquids can be explained only as t h e  consequence 
of cavitation (hollow-space formation); furthermore he proved t h a t  the  
dissolved materials themselves go into fog with a disappearing vapor pres- 
sure. To be sure, it is noted tha t  no fog formation takes place a f t e r  a 
careful degassing (13). The bubble formation which proceeds rapidly a t  the 
boundary surface could, however, be introduced by the  dissolved gases which 



~ g l l n e r ,  dispersion and with it cav i ta t ion  does not  occur in a" vacuum nor 
a t  extremely high pressures,* As ea r ly  as 1874, Kundt and Lehmann effected 
cavi ta t ion i n  completely degassed l i qu ids  by means of strong sound waves, 
This was accompanied by t h e  clouding of t h e  Liquid and foam formation, In 
t h e  formed hollow spaces which or iginate  with t h e  separation of t h e  
liquid,** t he  freed gas escapes as a consequence of t h e  pressure decrease 
so t h a t  in a shor t  time complete degassification is  brought about, 
Bergmum (10) has shown t h a t  a viscous sugar solut ion i n  water containing 
much,,air can be completely degassed by means of ul t rasonic  waves, providing, 
as Sorenson has proved (60), ' they have t he  proper frequency, The smaller 
frequencies requi re  higher energies, Therefore strong bubble formation can 
cer ta in ly  be a t t r i bu t ed  t o  t h e  accelerated vaporization or fog formation 
during which t h e  vapor bubbles a r e  formed, v ibra te  and burst .  The hissing 
noise which always accompanies cavi ta t ion is explained primarily by the 
strong boi l ing action,  

Boyle and Taglor (15) developed a formula- f o r  the  sound-energy 
densi ty  with a point where a l l  t h e  energy i s  absorbed by the  l i q u i d  and no 
cavi ta t ion takes  place. This a l so  i s  in accordance with our assumption 
t h a t  cav i ta t ion  depends on pressure. The partial  vacuum t e s t s  (Fi'gure 65) 
show tha t  only when p - Ps = 0 i s  the re  no ' cavi ta t ion.  Even f o r  very 
small outer pressures (p = 8 nm Hg) t he re  i s  evidence of damage in l iqu ids  
of low v o l a t i l i t y  such a s  glycerin and oils, while i n  l i qu ids  with lower 
boil ing points such a s  water, benzol, etc.,  which a r e  r e l a t i ve ly  gas f ree ,  

. C  no a t tack  could be noted even a f t e r  an extremely long t h e ,  

I 16. Formation of vapor bubbles and primary reaction 

I 
Rayleigh (45) was t.he first t o  calculate  t he  pressures accompanying ~ t h e  collapse of vapor bubbles. He assumed t h a t  t he  formed hollow spaces, 

were spherical. If p i s  again t h e  outer  pressure act ing upon t h e  bubble, 
ro the ,o r ig ina l  radius, P t h e  radius of t h e  compressed bubble and B 
t he  compression coeff ic ient  one obtains:- 

2 
L 

0 Pend - p  $(T-l)9 
3 F 

which gives pressures of many thousands of atmospheres, Using compression 
impact a s  a bas i s  Ackeret (2) arr ived a t  a pressure temperature relat ion- 
sh ip  i n  vapor bubbles. A t  t'he beginning t h e  inner pressure of t h e  bubble 

*At 2 atmospheres t he  dispersion i s  strongest .  Gases i n  l a rge  
quant i t ies  a c t  as buffers. .  

*Tridimensional i so t rop ic  tension! 

- e =  
(P - psI2 

2 
; p ,- outer pressure, p, = vapor pressure, 

2p - a 
p - density, a = sound velocity.  

-see Parsons and Cook (43) also (161, 



the inner pressure i s  f a r  ik excess o f  the out&-, as" a gesult of campression 
i n i t i a t e d  by the or iginal  pressure difference (p - p- ). Therefore, no 
equFUbriwn e x i s t s  i n  the  usual sense; the  f r i c t i o n d  forces are  ignored. 
The possibi l i ty  t o  calculate the inner pressure p i  depends essent ial ly  
upon a knowledge of the heat condition of the bubble, the heat conductivity, 
and the  time course of the hot vapors. For a nearly adiabatic compression 
of a bubble which with a stream velocity of 40 m/sec in a v e n t w i  tube, 
for  example, collapses wikhin a distance tha t  i s  four'times the diameter 
of the or iginal  bubble, a pressure some 2,500 times tha t  of the outer 
pressure and a temperature of about 2,000° K i s  obtained. The preliminary 
condition for the bubble collapse l i e s  in the very rapid outer pressure 
change. In contrast with the work of other investigators, Ackeret has 
under consideration water vapor bubbles and not gas o r  vacuum bubbles. 
Such large pressure changes a r e  ever associated with rapid vibrations. This 
i s  i n  harmony with our observations in the  osc i l la tor  experiment where the 
damage was always a t  the place of the vibrating vapor bubble, the degree of 
damage being a measure of the strength of the attack. Acbording t o  the  
investigation of Smith (58) who studied t h e  pulsation vibrations fo r  small 
gas bubbles in t h e  acoustic f i e ld ,  the  l o c a l  s t resses  are supposedly some 
15,000 t ines  tha t  of the  hydrostatic pressure. The resonance frequency i s  
expressed by: 

* .  

C P Here r i s  the:-bubble diameter, G the density of the  f lu id ,  x = , 
v 

p the  pressure, and a the surface tension. With a frequency of 

I 10 k Hz (10,000 cycles/sec) the c r i t i c a l  r would be 0.3 mm! 
A. and E. Dognon and Biancani (17) also showed in t h e i r  ultrasonic t e s t s  a 
considerable temperature r i s e  i n  various fluids,  leading the authors t o  
ascribe an important r o l e  t o  the  gas content. According t o  ~ e r g m n h  (LO), 
it i s  possible tha t  adiabatic compression of air bubbles can cause a 
considerable loca l  r i s e  i n  tempe atures.  From the  gas equation bne obtains z a t  a frequency of 1,000 k H 2; (10 cycles/sec) with an amplitude of 4;4 x 10-4 
cm a r i s e  of some 23y0 C. 

1 Later, van Iterson also explahed cavitation and the damage vhich 
follows by the mechanism of collapsing a i r  bubbles. As previously mentioned 
we have for  equilibrium the  relation: 

where pi i s  the  inner pressure, p the .outer pressure, a the surface 
tension, and r the radius of the a i r  bubble. Van Iterson assumes tha t  the 
escape of the dissolved gas by t h e  pressure drop i s  the  cause of the cavita- 
t ion phenomenon. H e  remarks tha t  the symptom a t  the beginning of cavitation 



l iquids .  The energy which i s  s e t  f ree  i n  t he  coilap& of an air bubble 
is  determined by the  cap i l l a ry  work: 

(ro = radius of bubble pr io r  t o  collapse, u - surface tension). 
The forceful  action i s  supposedly due t o  t he  bursting of the bubble which 
a f fec t s  a very small surface since t he  contact angle of f a s t  adhering bubble 
is  but 4 t o  6 degrees, I n  the  explanation of t he  destruction process it i s  
e s sen t i a l  t h a t  the  bubble stays f a s t  a t  l e a s t  momentarily dwing  the  com- 
pression, According t o  van I terson t h e  bubbles move qu i t e  s l o w u  h a film 
layer  and only the  l a rges t  a r e  thrown off and f ind  t h e i r  way i n t o  the  
l i qu id  flow, This shows t h a t  there  a r e  exceeding3y high excess pressures 
f o r  very s m a l l  bubbles inasmuch as  t h e  surface tension remains constant even 
as t o  bubbles of very s m a l l  r ad i i .  Accordingly, one arri.ves at  a c r i t i c d l  
radius s ince t h e  dissolved air i s  s e t  f r e e  when i t s  presswe drops t o  t h a t  
of t h e  pressure of solution, according t o  Henry's law. The author makes h i s  
c ~ c u l a t i o n s  with t he  assumption t h a t  t h e  reabsorption of t h e  air by the  
l i qu id  takes place without resistanee.  H e  f ind t h s  time f o r  disappea~ance 
of a bubble with a diameter of 10 mP t o  be seconds and fo r  one with a 
diameter of 0,l mm as 10-4 seconds, The path t raversed by the  s m a l l  bubble 
with a water veloci ty  of 12 m/see amounts t o  0,01 mm, The t h e  rat2 of t h e  
compression and the  subsequent impact pressure of the  water. became extra- 
ordinar i ly  l a rge  with dhiaishing bubble radius,  This i s  t r u e  even when 
more vapor bubbles than gas bubbles take part, This does not exclude t he  
pos s ib i l i t y  of a i r  containing vapor bubbles, From the  hypothesis advanced 
by van I te r son  concerning the  rapid reabsorption of t h e  air it would neces- 
sarily follow t h a t  by t h e  collapse of the  vapor bubbles chere would be 
exceedingly rapid recondensation, 

Ackeret and de Hal ler  (5) succeeded i n  bringitng about t yp i ca l  
cav i ta t ion  damage with t he  a i d  of a simple hydraulic impact apparatus with- 
out exceeding impact pressures of 6 atmospheres, They also assumed t h a t  t he  
phenomenon involved ne i ther  gas nor vapor bubble formction, whether used 
wikh water or benzine, I n  s p i t e  of t h e i r  specif ic  statement t ha t  the  pres- 
sure  chamber a l w a y s  remained under a pressure of 7 atmospheres, we suspect 
t h a t  with the  su f f i c i en t ly  rapid changes (16 impacts per second) there  was 
on the  re turn of t he  pis ton a re f lec ted  impact wave causing a s t r e s s  re lease  
and bubble formation, In eve-ry case where cavi ta t ion appeared i n  t h e  t e s t ,  
there  was likely the  primary reaction, a movement of a m0ment~ari1.y attached 
vapor or gas bubble, f o r  which several  proofs have been advanced, 

Even ~ c h r g t e r  pointed t o  the connection between bubbles and destruction 
and emphasized t h a t  a pure water stream in  i t s e l f  was insuf f ic ien t ,  In t h e e  
most impressive tesb, shown i n  Figure 37, t h e  pronounced bubble formation 
i s  with moderate amplitude in the center  of t h e  t e s t  specimen, and a 
resoriance bubble burs ts  with a change t o  a stronger vibration,  If the  
vibration i s  suddenly st.opped, t h e  main damage is found t o  be exactly a t  
the  center.  I f  t h e  bubble, ordinar i ly  i n  the center, is  moved across the  



over the e n t i r e  t e s t  b0d.y. Also in the  v e n t m i  tube the  de j t ruc t ion  J 

must be a t t r i bu t ed  t o  t h e  f l u i d  film studded with bubbles and vibrat ing 
on t h e  material  base and not t o  t he  rhythmically moving water masses or 
t o  t h e  periodic const r ic t ion and widening of t h e  l i qu id  stream. A veri-  
f i c a t i on  f o r  t h i s  i s  found in the  very long zone of damage behind t h e  
region of l a a s t  pressure. 

We now follow up t h e  real*prinaiy react ion in t h e  o sc i l l a t i ng  
apparatus. Due t o  t h e  i n e r t i a  of t h e  surrounding water, t h e  adhering 
vapor bubble i s  compressed and expanded t o  t h e  rhythm of 10 k H z  
(10,000 cycles/sec). This bubble can a l s o  collapse in a half  period in 
t h e  time of see. According t o  Ackeret t h i s  rapid  change in t h e  
pressure i s  exactly the condition necessary f o r  the  burs t ing of vapor 
bubbles. 

We prow calcula te  the  time required t o  collapse a bubble.* One with a 
diameter of cm disappezrs in 10-5 sac. a t  a r e l a t i v e  ve loc i ty  of 
4 x 103 cm/sec, f igured according t o  Ackeret Is apparatus. With t h e  
o sc i l l a t o r ,  when t he  avera e amplitude i s  0.05 mm and t he  average ve loc i ty  
of t h e  pis ton some 5 x 1$ crn/sec we pet a collapse time of 2 x 10-5 sac. 
which i s  s t i l l  l e s s  than one-half t h s  o sc i l l a t i ng  period. In the  case of 
l a rge r  vapor bubbles, t he  pressure developed within t h e  bubble and t he  
tempera ure  i s  even higher, allowing a t o t a l  compression tb,2 of a t  l e a s t  
5 x lo-) sec. Due t o  t h e  momentary adhesion of t he  vapor bubble during 
compression there  i s  a t r ans f e r  of heat t o  the  t e s t  body, concentrated upon 
an exceedingly small area  (0.1 p x 0.1 p and l e s s )  as a consequence of t h e  
high temperatures. In  genei-al, t he  compression process i s  polytropic, a t  
any r a t e  not qu i t e  adiabat ic .  In a l l  probabi l i ty  t h e  g rea te r  portion of 
heat i s  t rans fe r red  t o  t h e  surrounding l i q u i d  which a s  a consequence of t he  . 
pressure drop a t  t h a t  place i s  again vaporized. This indicates  t h a t  the  
heat of compression r a i s e s  t he  temperature of t h i s  smal1,surface area t o  a 
depth of a few atom layers .  The f ac t  t h a t  the re  a r e  always local ized rapid 
temperature changes points  t o  t h e  d i r ec t  consequences of t he  primary 
reaction.  This doubtless allows t he  pos s ib i l i t y  t h a t  the  heat  expansion of 
t h e  mater ia l  i nd i r ec t l y  plays a par t  in t h e  cavi ta t ion process. The 
local ized temperature change is i n ' t u r n  dependent upon t he  spec i f ic  heat 
and t h e  heat conductivity.  A possible outside influence i s  t h e  property of 
chemical af f inity--here t h e  tendency of amalgamation (oberfl8chenverbindungen). 

II This may have some bearing on t h e  mechanism of compression depending upon 

* ~ t  is  impossible t o  consider water a s  e l a s  i c ,  so l id  mate r ia l  due t o  
t he  exceedingly small re laxat ion periods of 10-I' sec., although the r e  are 
accelerations a t  average amplitudes which a r e  5?3 times t h e  accelera t ion 
due t o  t he  gravi ty  of the  ea r th .  (see a l s o  Pohl (u)) . 

*By the  vibrat ing bubble vre do not necessar i ly  mean one and t h e  same 
bubble, s ince  a t  t he  place vrhere t he  bubble collapsed t Q e  i n ~ b a b i l i t y  of 
pressure and tenperature c r e s t e  conditions favorable t o  t h e  re lease  of a 
new vapor bubble by fu r the r  pressure. 



of t h e  material ,  The impact of the-l iquid which folloGs-th;? collapse of 
t h e  bubble i s  upon a body which i s  not in its ordinary s t a t e  and fo r  t h i s  
reason enormous s t a t i c  pressures are not required (see  a l so  Go Vogelpohl 
(69)). This a l so  reveals  why cavitat ion dest ruct ion could not be explained 
so l e ly  from observations of t h e  mechanical proper t ies  of the  ; n a t e ~ i a l  a t  
room t emperat w e ,  

In order t o  d i r e c t l y  t e s t  t h e  statements made, many experiments were 
car r ied  out t o  measure these  high temperatures with t h e  very best  themo- 
co~;ples, A s  was $0 be expected, t h e  r e s u l t s  were negative since t h e  
i n e r t i a  of t he  thermoelements was too p e a t  and i t s  soldering too l a r g e  in 
proportion t o  the  a rea  w i th j l~  which t h e  act ion takes  place, The circum- 
s tances  a r e  similar t o  those encountered by de H a l l ~  in h i s  attempts t o  
measure pressures with piezocrystals where only loca l ized  high pressures 
occur (25), 

We include i r ~  t h e  ex te r io r  f ac to r s  a l l  those influences which e i t he r  
increase or  diminish t h e  number and t h e  extent of t h e  "primary reactions.  
In Figures 70 t o  73 we show aluminum t e s t  bodies subjected t o  cav i ta t ion  
f o r  10 minutes with subatmospheric pressures and varying temperatures, 
The damaged area i s  f a i r l y  w e l l  defined; vte may consider it t h a t  pa r t  of 
t h e  t e s t  specimen with read i ly  apparent dest ruct ion and excluding t h a t  par t  
which t o  t he  eye appears f r e e  from damage, By plot t rng t h e  diameters of 
these  qu i te  c i r cu l a r  a reas  against  the  outside pressures, one obtains 
values f o r  a l l  t e s t s  which conform c lear ly  t o  p - p,. We f ind here a l s o  
t h a t ,  within wide l M t s ,  it is  immaterial whether p for a cer ta in  value 
of ? - p, i s  la rge  o r  small, The maximum damage a t  p ,- 760 mm Hg i s  
found when ps-180 mrn and becomes smaller finom the re  on, When p = 550 mm 
01- l e s s ,  t h e  maximum destruct ion i s  always when the  temperature i s  t h e  lowest,  

Chemical react ions  in cavi ta t ion 

In h i s  cav i ta t ion  tests a t .  the liassachusetts Inst.itu.i,e of Technology, 
in 1932, W e  Spannhake observed the  following: 

In a venturi  tube with a 90 degree elbow one w a l l .  was reinforced 
with a 3 mm bronze sheet  fastened with b o l t s ,  A t  t h e  area where the  
blabble collapse took place there  was always a pronounced t a r n i s h ,  
Furthermore, t he  brcnze sheet stretcned between the  bo l t s  and became 
warped. In the  following year, ~ch r8 t e r .  (50 and 51) a l so  noted t h i s  
t a rn i sh  on brass bodies subjected t o  cav i ta t ion  t e s t s  in ventur i  tubes ,  

Such ta rn i sh  e f f e c t s  were l a t e r  rioted a l so  in VP-ious s t e e l s  and 
cast ings  ( B e r t  and 1. Spannhake (18)). It was found ;hat s t e e l  sub- 
jected t o  a short  t e s t  had a loosely adhering f i lm of oxide or hydroxide 
which was of such thickness a s  t o  give a blue interference color., On 
longer exposure t o  cav i ta t ion  action these  oxide layers  became very 
strong and anchored themselves i n to  t he  meta l ,  The t a rn i sh  colors  
become pronounced t o  t h e  extent t h a t  they may be photographed rriLh 
ordinary film, Figure 74 shovrs a non-ar~~ealed cast-malleable-iron t e s t  



i a  v i s ib l e  at t he  l i g h t  portion. One can note a Garicolored r ing  system 
i n  t he  s t e e l  t e s t  body cavi ta ted  i n  t h e  o s c i l l a t o r  f o r  1 0  minutes i n  
water, shown i n  Figure 75. B r i t t l e  metals such as ca s t  i ron,  whose 
surface layer  i s  not kneaded t o  any extent,  r e t a i n  t h i s  coloration even 
a f t e r  long cavi ta t ion periods. This sheen i s  somewhat like t h a t  i n  very 
t h i n  blades o r  l i k e  t h a t  of the  colors  i n  metals at high temperatures 
used as a rough temperature scalb in rnetallurey. This d i r e c t l y  supports 
our hypothesis concerning t h e  high local ized temperatures (from the 
co lors  ce r ta in ly  higher than  250° c), since t he  l aye r s  of t a rn i sh  could 
not  develop in so short a time under ordinary temperatures. In  Figure 76 
we  nay recognize %here continued cavi ta t ion pa*ly removed o r  cut through 
t h e  oxide layer .  With z inc we have dark-colored oxide layers .  Espe- 
c i a l l y  pronounced i s  t h e  oxidation of cadmium; t h e  brown c ra t e r s  covering 
t h e  area  of a t tack a r e  in t h e  main cadmium oxide which could be deter- 
mined immediately by X-ray analysis.  The chemical a t t ack  a s  a secondary 
react ion i n  cavitat ion usual ly  manifests i t s e l f  by e q o s i n g  t h e  grain 
boundaries or  by t he  strong ac t ion  upon t h e  variously  arranged c rys ta l  

Fir es 77 t o  82 shon some microphotographs of various metal 
test bodies magnesium, antimony, brass ,  and s t e e l )  cavi ta ted in water at 
room temperature. Such etchings  could be obtained on specimens which had 
previously been polished. Upon t h e  etched surfaces one may again observe 
loca l ized  damage due t o  primary cav i ta t ion  action.  , 

With respect t o  the  chemical influence due t o  u l t rasonics  vre r e f e r  the  
reader t o  the  work of Bergmann (10). 



18. The change b r o u ~ h t  about a t  t h e  surface of" t h e  rnaberY@&g_ cavitat* 

An understanding of  the chemical influence, r e a d i l y  obtained from a 
s tudy of the mechanism of  the primary process leads d5.x-ectly t o  question- 
i n g  t h e  manner i n  wfiich.the dest ruct ion of the  m t e ~ f a l  t akes  place, whether 
it is  purely mechanical, purely chemical, o r  a combination of both processes, 
By the primary process i s  meant the developnent of high loca l ized  temperatures 
i n  d ~ i c h  the  veloci ty  of reac t ion  K increases exponentially with - 2, where 

T 
B i s  a measwe of the a c t i v a t i n g  energy. F w t h e m o ~ e ,  one must determine 
whether i n  the  rnecha~ljical des t ruct ion t h e  individual  lmpact o r  f a i l u r e  due 
t o  fsti gue is  ~ e s p o n s i b l e  f o r  t h e  appearances t h a t  character ize  cavitat ion.  

One could present evidence t h a t  f a t i g u e  s t r e s s e s  are not  t o  any extent 
involved i n  t he  purely mechanical destruction,  f o r  t e s t  specimens of pure 
magnesium subjected t o  cav i t a t i on  f o r  l e s s  than one-half second become 
damaged, a s  may be seen i n  Figure 83. After only one-half second p las t i c  
shrinkage may be observed and i n  some t e s t s  furrowed damages may a l s o  be 
noted. However, even i n  s t e e l  specimens, which have nuch grea te r  cavitation 
resf  stance than magnesium, evidences of des t ruct ion may be observed i n  such 
sho r t  periods t h a t  would ind ica te  t ha t  f a t i gue  f a i l u r e  due t o  continuous 
s t r e s s e s  would b e  brought about a f t e r  but a few thousand impacts. The 
sho r t e s t  incubation period was pephaps one-tenth second, but h e ~ e  a l so  a 
grea t  number of points of a t t a ck  could be observed, This ind ica tes  t ha t  tp;t 
the  beginning only the individual  impacts are responsible s ince  here the  
primary process i s  not ~scompanied by any-strong secondary act ion,  There is 

c a var3ation i n  strength of these  individual  impacts i n  the  different .  regions 
which i s  i n  harmonywith the  hypothsais concerning t h e  p*-imary process, This 
reminds us of t h e  damage observed by Va+w and Sorberger (681, which was 
caused by the individual  impacts i n  the  drop-Fmpact apparatus. 

I 
With contrnued act ion there  i s  t h e  l ikelihood of t h e  appearance of 

corrosion f a t i g u e  i n  adciition t o  t he  mechanical f a t i g u e  s t resses ;  f o r  the  
i s t rong p i t t ing ,  which is t he  r e s u l t  of t h e  primary process, provides many 

pronounced micropores t h a t  a c t  as  s ea t s  of chemical action,  It is, however, 
impossible t o  explain t h e  " i n i t i a l "  destructions on t h e  basis  of fa t igue,  
The dual  nature of the damage, t h a t  produced by t h e  p r i m e y  Influence and 

I t h a t  caused by fatigue, i s  exemplified i n  the  cavi ta ted zinc speclmen 
(course-grained cleavage) i n  Figure 84. There one may s e s  a darker par t  
which consis ts  of a brown oxide and a Ughb-shlny par6 i n  which t h e  fibee 
c.ystal surfaces a r e  exposed, the  r e s u l t  of fatig<e failure i n  which large  
crystals have been s p l i t  off (25 minutes corresponds t o  15 x lo6 impacts), 
The o d d i z e d  p a r t s  are  due t o  t he  primary influence. From the development 
of t h e  curve representing volume l o s s  d . th  time (Figures 8 and 28) one must 
assume t h a t  primary and secondary processes play a r o l e  i n  cav i ta t ion ,  

Disregarding ordinary corrosion conditions such as combinationa of 
water and base metals which a r e  not inact ive ,  or mercury w i t h  metals 
soluble  i n  it, the  chemicals a t t a ck  may have two basic  cav i ta t ion  
dc?struction methods: first, there  may be a reaction of such magnitude a3 



t o  cause a l o s s  i n  weight and f o r  which the  term cav i ta t ion  corrosion is 
Just i f ied;  second, there  may be chemical a t tack without any marked loss  of 
weight, act ing t o  some extent a s  indicator  of the p r i m a 4  process and having 
only an ind i rec t  influence upon t h e  l o s s  of volume (see a l s o  t he  addit ional 
discussion below). The f i r s t  case  may be considered as impossible fo r  
chemically r e s i s t an t  materials  (glass,  p las t ics ,  and gold pla t ings  cavitated 

I1 I 1  

i n  water) ; Fottinger and ~ o t t c h e r  each made reports on tha t .  . I 
Evidence t h a t  the  chemical react ion i s  merely a s ide  phenomenon i n  the 

microscopic destruction of materials  i s  given i n  t h e  s e r i e s  of Figures 85 
to 87. The t e s t  body consis ts  of a Mg-Ca a l l oy  with 4.8-percent c a l c i u .  

buted over t he  homogeneous magnesium c r y s t a l  mixture (white i n  t he  picture) 
may be observed. A t  times these appear t o  be a multitude of chemical corro- 
sion points. Morever, places a t  which shrinkage has occurred may be seen 
qui te  plainly,q especial ly  strong deformations may be observed i n  t he  c rys ta l  
marked Number 1 i n  Figure 87. A clue as how the  weight l o s s  is  brought about 

I from the eu tec t i c  alloy.- A t  point  2 t he re  i s  a c r y s t a l  which i s  pa r t l y  

1 is, however, not possible t o  make a de f in i t e  statement concerning the  attack I 

I A t  f i r s t  we always encbunter stronn local ized deformations and s t r e s s i s  I 

actual  loss  i n  weight. The continuous microscopic observation- i n  t he  cavi- 
t a t ion  of s t e e l  gives some highly valuable information. The i den t i ca l  spots I 

i s  i n  t h e  form of protrusion points or  edges which i n  turn a c t  as favored 
sea t s  a t  which vapor or  gas bubbles a re  developed and to which they may adhere. 
Jljahskaja ( 46 ) ,  too,  recently arr ived a t  the concluvion t h a t  the  chemical 

I ?&-:-The eutect ic  system consis ts  of a c rys t a l  mixt~~re r i c h  i n  Mg and of 
M a  Iln 



19, The behavior of metall ic materials  

A more thorough invest igat ion of t h e  damaged areas reveals t h a t  some 
have a shrunken appearance ( a r e  p l a s t i c a l l y  deformed), while i n  other  t e s t s  
some areas give t h e  iaipression of having been Lased, The maerophotographs 
and microphotographs below a re  reproductions of cavi ta ted magnesium and 
brass t e s t  bodies showing pronounced p l a s t i c  deformations, I n  Figures 88 
t o  93 we see t h e  l i n e  formations which a r e  similar t o  those observed by 

11 

Bottcher (1.4) and by v. Schwlrz and coworkers (561, O f  spec ia l  i n t e r e s t  i s  
the  macroscopic view of Figure 88 showing the  varied manner i n  which shrink-. 
age occurred f  n the d i f fe ren t ly  o ~ f  entated crysta ls .  The crysta1lographicalJ.y 
determined f i s s u r e s  and the d i res t ion  i n  which they a r e  most l i k e l y  t o  develop 
a re  c l ea r ly  seen i n  Figures 91  and 92, Strong transverse f i s sures  a r e  a l so  
r i s i b l e  i n  Figure 93. The a t tack  takes place i n  such favored l o c a l i t i e s  where 
twin s t reaks  or  grain boundaries occur and especial ly  along e;lclosi.ng borders 
or  where t h e  grains  a r e  l e s s  securely bonded. Figures 94 t o  96 give an idea 
of the  fusion e f f ec t  i n  cavftation,  I n  t h e  macrophotographs of aluminum 
(F igwe  27) and cadmium (Figure 94) there  a re  t h e  charac te r i s t i c  c r a t e r s  and 
the large fusion holes with surfaces, and especial ly  r idges contras t ing 
sharply ~ 5 t h  the  l e s s  affected regions. I n  Figure 95 the  peculiar  tubercle- 
l i k e  formations a re  fusions which occurred i n  very small  regions, This i s  a 
mfcrophotograph of a magnesium specimen stpongly cavi ta ted i n  water. Cavitated 
Mg-Ca t e s t  specimens (4.8% Ca) also show fusions at places where mixed crystals 
are  located. 

FOP an evaluation of the  primary cavi ta t ion a t tack  (not*, however, f o r  a 
techni c a l  or  p r ac t i ca l  s t rength evaluation) it i s  necessary t ha t  the  a t tack  + 

be studied within very short  periods, s ince  soon a f t e r  destmctfon takes place 
there  is a strong overlapping of the  primary and secondary effects .  A de f in i t e  
physical charac te r i s t i c  of a mater ia l  ( f o r  example t he  melting point)  can be 
considered a contributing f ac to r  i n  the  res is tance t o  cavi ta t ion only for  
those processes which take place dwing  t h e  incubation period. The exponential 
increase i n  weight l o s s  during the  continued course i n  cavi ta t ion is explained 
by strengthened primary e f f ec t s  made possible by the  previously damaged areas. 
An example of t h i s  i s  a magnesium t e s t  body, Figure 97, showing a multitude 
of small a t t ack  points within t he  l a rge r  previously formed craters .  

I n  the v i c i n i t y  of damages caused by individual impacts, whose magnitude 
depends upon the  s i z e  of the collapsing vapor bubble, there  appear a t  times 
unique chemical at tacks,  an example i n  a t e s t  body of monocryst&lline antimony 
is seen i n  Figure 98, It may a l s o  occur a f t e r  s h o d  cav i ta t ion  period in 
s t e e l  specimens. The somewhat concentric oxide rings always appear i n  the  
same manner, i r respec t ive  of t h e  method used, Figure 99 shows s t e e l  c a d -  
ta ted i n  the  ven tur i  nozzle, Thepe i s  s t i l l  doubt as  t o  whether these  local 
corrosions about t h e  points of dest ruct ion a re  due t o  a f t e r  reactions brought 
about by local ized formations between t h e  p l a s t i ca l l y  deformed and nondeformed 
regions or whether they a re  t h e  r e s u l t s  of the high-temperature ~ u m 9 ,  

The l a t t e r  assumption surely  appl ies  t o  b r i t t l e  materials  such as antimony, 



many corros ion  cen te r s  encountered a f t e r  very  s h i r t  c a v i t a t i o n  p&iodso 

20. The behavior of nonmetal l ic  m a t e r i a l s  

Of the  nonmetals g l a s s  and p l e x i g l a s s  i n  water  and ord inary  salt  i n  
benzine were included i n  our  c a v i t a t i o n  experiments, The manner in  which 
g l a s s  i s  a t tacked may be seen  from Figure 100 which i s  220 t imes  enlarged. 
The e f f e c t s  of t h e  i n d i v i d u a l  h p n c t u  a r e  i n  t h e  form of small holes  which 
only r a r e l y  a r e  connected by f ine-ha i r  cracks. This  demonstrates c l e a r l y  
t h a t ,  genera l ly ,  t h e  primary process must t ake  p l a c e  wYthin an exceedingly 
small region  and t h a t  it must be very  r a p i d  s i n c e  glass i s  considered a 
p e r f e c t l y  b r i t t l e  ma te r i a l ,  Figure 101 shows a t e s t  body of p l e x i g l a s s  
c a v i t a t e d  i n  water. Here t h e  l ines 'produced i n  t h e  gr inding  process formed 
t h e  s e a t s  of a t t ack .  The unique behavior of rosk  s a l t ,  c a v i t a t e d  i n  benzine, 
i s  well i l l u s t r a t e d  i n  Figures 102 and 103 where ' as ide  from t h e  gene ra l ly  
weaker a t t a c k s  one may note  t y p i c a l  fus ions .  Experiments with rubber,  

c a r r i e d  out  by ~ c h r o t e r  (51) i n  the  v e n t u r i  tube, showed t h a t  a f t e r  b u t  few 
hours t h e  i n t e r n a l  s t r e s s e s  were of such s t r e n g t h  t h a t  t h e  "rubber l i q u i f i e d  
i n s i d e  and broke open a t  t h e  outside.1t* The i n v e s t i g a t i o n s  concerning t h e  
behavior  of rubber, l e a t h e r ,  and s i m i l a r  ma te r i a l s  i n  the high-frequency 
o s c i l l a t o r  have not been concluded. The d i f f i c u l t y  here  l i e s  i n  t h e  proper 
f a s t e n i n g  of t h e  sample s o  t h a t  c o r r e c t  f requencies  may be brought about. 
Many of these  m a t e r i a l s  probably possess  cons iderable  sound abso rp t ion  
p rope r t i e s  and it is  poss ib l e  t h a t  bes ides  t h e  a c t u a l  c a v i t a t i o n  des t ruc t ion  
an  i n n e r  s t r u c t u r a l  d is turbance  may a l s o  p l a y  a p a r t  (10 and 28). 

21. S t r u c t u r a l  change brought about by c a v i t a t i o n  

t - f t e r  microscopic examinations d isc losed  t h a t  t h e r e  was a sepa ra t ion  
of t h e  c r y s t a l l i n e  g ra ins  when mater ia l s  were sub jec t ea  c a v i t a t i o n  s t r e s s e s ,  
a t tempts  were made t o  i n v e s t i g a t e  thoroughly t h e  cleavage and s t r u c t u r a l  
r e l a t i o n s h i p s  with t h e  a i d  of X-ray in t e r f e rence .  For  t h i s  purpose we 
employed the  r e f l e c t e d  r a y  method, which had t h e  a d d i t i o n a l  advantage of high 
r e so lv ing  powers. The p a r t i c l e s  remaining i n  t h e  l i q u i d  a r e  f i l t e r e d  and 
i d e n t i f i e d  by t h e  usual  Debye method of ana lys i s .  The t e s t  bodies  themselves 
a r e  centered i n  such a manner s o  t h a t  t h e y  a r e  near  t h e  axis of the  camera 
with t h e i r  f r o n t  sur face  perpendicular  t o  t h e  main beam. The diameters  of 
t h e  X-ray camera were 57.3, 95.5, and 114.6 rnm, I n  order  t o  expose t h e  
i d e n t i c a l  reg ion  p r i o r  t o  and a f t e r  c a v i t a t i o n ,  t h e  t e s t  bodies  were provided 
with bore  holes  a t  t he  s i d e s  with which t o  f a s t e n  them i n  t h e  apparatus.  
( see  Figure 22.) A re f ined  copper t a r g e t  was  used a s  the  source  of t h e  rays  
and the a r e a  which was  h i t  w a s  about 1 d. I n  these  i n v e s t i g a t i o n s  we pa id  

*Vater and Sorberger  (68) found t h a t  rubber behaved i n  t h e  i d e n t i c a l  
manner i n  t h e  drop impact apparatus.  



the shor tes t  cavi ta t ion periods possible so t h a t  the  layers  i n  t h e  region 
under observation were not t oo  deeply affected.  Thi9 insures t ha t  the  
penetrat ion of the  X-ray beam i s  i n  about the  same rele.t.Y,on as t h e  depth t o  
which the e f f e c t s  due t o  cav i ta t ion  have proceeded, For t h e  most* diverse  
t e s t  bodies t h i s  was found t o  be almost exactly t h e  same, A s  the  Consequence 
of cav i ta t ion  the  g a i n  s i z e  of t h e  main c ~ y s t a l l i t e s  i s  diminished; t h i s  
means they have been s p l i t ,  which agrees with t h e  microscopic observations, 
The Debye l i n e s  of the  cavitated matepialv a r e  always cornpapad i.n t h e  sage 
manner, contras t ing them with the  l i ne s  of the &,?affected materials  as 
shown i n  Figures 104 and 105 and Figures 106 and 107, The mny individual  
points  i n  Figures 104 and 106 representing r e f l ec t i on  cones ( r e f l ex  kegel) 
have la rge ly  disappeared i n  Figures 105 and 107, for4ming uniform l i ne s .  We 

can say t h a t  t he  s i z e  of the  c q s t a l l i t e s  has changed from 1om3 cm t o  smaller 
e r y s t a l l i t e s  whose magnitude i s  of the  order of 10-4 t o  2.0-5 cm, We found 
this s p l i t t i n g  of the p a i n s  especia l ly  pronounced i n  a Mg-Ca alloy ~ 5 t h  4.8 
percent Ca which was cavi ta ted i n  tm stages  (Figures 108 t o  110). The 
s ing le  reflections i n  Figure 108 become progressively fewer in Figures 109 
and 110, After t he  cav i ta t ion  the s t rong ref lect ions  ( l a rge  crysta ls)  become 
considerably l e s s  i n  number, 

Figures 111 and 112 show rgntgenograms of a homogensvue Mg-Ca a l l oy  
with 0.45 percent Ca before and a f t e r  ca\-itation, It may be noted here how 
the  individual  re f lec t ions  of the fine-grained, o r i g m a l l y  hignly oriented 
lagers  extend themselves along the Debye cones, which mealzs that; cav i ta t ion  
d i sor ien t s  t h e  fine-grained materials ,  It i s  important that the separation 
of t h e  a -doublet remains i n t a c t  even af'ter cavitat ion,  indicat ing an 

192 
sbsence of any marked i n t e r n a l  s t resses ,  This dsmonstrates t h a t  ~ e L a t i v e l y  
few regions of the  en t i r e  cav i ta ted  zone d i sc lose  any s i rong defomacions, 
whlch i n  turn  i s  evidence' that  t h e  action of t he  primary process 1s confined 
t o  rmnute areas while the  macrodarnage, exemplified by t h e  s e p a r a ~ i o n  cf 
pa r t i c l e s  and t he  exposure of u n s t r e ~ s e d  material,  ensompasseF more o r  less 
the  e n t ~ r e  layer.  The manner i r r  which t h i s  d i ~ r r r l e n t a ~ i o n  i s  effasced is 
well pictured i n  Figares 1'13 t o  115, which show a copper t e s t  spetimen at 
t h e  beginning and a f t e r  30 and 120 seconds of eaviiabioil. Similar r e a u l t e  
are  obtained i n  experiments with monocrystals, A t  the begfnnlng of cad -  
t a t l o n  the s p l i t  c r y s t a l  gra ins  s t i l l  ma in t an  a s t rong d i rec t iona l  
or ienta t ion as expected, Figures 1.16 t o  118, X-ray exposures of a salt .  
crystal cavi ta ted i n  benzine, show pla ln ly  the manner I n  bhir,h rnonocrys~als 
behave on cavi ta t ion,  The X-rays taken a f t e r  can ta t fon  those of 
iarge  pieces t h a t  had become separated, Therefore, t h e  c ~ y s t a l  o r ien ta t ion  
IS not the  same i n  each figure, The I9w s t rength of such a Na-C1 mono- 
crystal perni ts  the  separat.lon of f a i r l y  l a rge  pieces by a ra ther  weak, 
w f o r m l y  distributed pressuye. Thi3 separation process i s  fcr thered by 
the grooving of the  %%st specimen w i t h  t h e  sidewide t u n i n g  in the remcrval 
cf t h e  stunpie, 

"Homogeneity I n  t h e  sense of equal grarn s l s e  rat,k:er t h a n  theore t ica l  
?has e homo gene it.^, 



'he  invest inat ion of the S e ~ a r a t e d  oa r t i c l e s  - C - 

With large amplitudes it i s  possible t o  pulverize t h e  t e s t  material  
d i r e c t l y  i n t o  the  l iquid so t h a t  a t r u e  suspension i s  obtained, f o r  example, 
aluminum i n  water (see sect ion 8). The residue of the  aludnum, which 
was pa r t l y  coarse grained, becomes very f i ne  grained a f t e r  cavi ta t ion i n  
water, and using high re f lec t ion  angles there  is a split tin^ of the  doublets. 

I undergone -any marked- deformation. , In  t e s t  s a m ~ l e  s com~osed of anisotronic 

- - -  Y ---- 
l e r g e s t  par t  of A l ,  Zn, and Cd which i s  worn off  is  pure metal. Only in  
the  case of magnesium a r e  there  any appreciable amounts.of oxidas and hydrox- 
id--. This indicates  t h a t  t h e  processes causing the  weight l o s s  a r e  much 
more of a mechanical than of a chemical nature. Ch3mical reactions, however, 
may serve as  indicators  for  t he  stages through which t h e  primary process runs. 

The simplest way t o  prove t he  ch-deal a t tack  i s  by the  use of mercury 
as t h e  cavi ta t ion medium. This affords at the  same time an easy separation 
of t he  purely mechanical from the purely c h d , c a l  influencee ( the  mechanical 
influences as characterized bv the  brimarv effect and the machnn.lcn'l sacnnda~v 

stronger than those cavitated i n  water, This &ong destrn&fon may be 
explained by the  hi'gh surface tension ( o  = 500 dynes/cm, see sect ion 14) 
and t h e  considerably higher density. S t e e l  combines nei ther  with l iqu id  nor 
vaporized mercury and consequently does not go i n t o  a mhed c rys t a l  forma- . . 
t ion.  Therefore, microscopic examinations show merely a l a rge  number of 
l oca l  a t tacks  w i th  p l a s t i c  shrinkage (Figure 119), Here- the  reg-ion of n 

i s  of greater  extent than with water a t  low temperatures, 
understandable, since there  i s  l e s s  adhesion of the vapor bubbles ( k t h  low 
a f f i n i t y  and no wetting property) and they can move across  the  surface much 
more easi ly ,  This  act ion i s  furthered a l so  by t h e  l a rge r  ac t i ve  stream 
impulse. 

1 
However, i f  al loyable metals such as lead, cadmium, or  copper a r e  

cavitated i n  mercury, there  i s  besides the  strong a t t ack  considerable 
amalgamation.* The ve loc i ty  and t h e  course of the  al loying action i s  a 
su i t ab l e  indicator  of the conditions governing the primary process. A lead 
sample a f t e r  1 second of cavi ta t ion i n  mercury gives a mixed lead crystal .  
The t w o  X-ray exposures, Figures 120 and 121, show c l ea r ly  t h a t  we deal  
here with t he  homogeneous formation of a lead amalgam, The c rys t a l  l a t t i c e  
s t ruc tu re  shrinks, This mixed c rys t a l  formation takes place with t h e  utmort 
rap id i ty  and only l a t e r  on does weight l o s s  s e t  in. For comparison we miaht 

1$1 *Accordinn t o  Schmid and Ehret ( ~ 9 ) .  metals such as i ron,  chromium- 

E anodically more passive. 



mentf on t ha t  t h e  melting point  of such a mercury-lead alloy Ues between 
260' and 290' 0. To prepare t h i s  lead mixed c rys t a l  i n  such a shor t  time 
themnically, temperalmes  fa^ beyond t h i s  melting region would be required. 
I n  t he  cav i ta t ion  of cadlmiurm i n  rnepcw;' the  amalgamatfon occurs just as ' 

quickly beifore extensive dest ruct ion takes place, The cadmium mixed cry- 
seals formed i n  thfs process a r e  like the  s o l i d  metallic sol.ution effected 
under a p r e s swe  of 50 atmospheres-percent cadmium (50 atmosphere8 
multiplf ed by the percentage o r ' t h e  cadmium?) act ing upon the  upper surface 
of t e s t  piece fop a f e w  seconas. Also when copper i s  cavi ta ted in mercury 
it appears as tP some mercury is  dissolved i n  the  s o l i d  copper. 

I n  t h e  cavi ta t ion t e s t s  with mercury as t h e  medium, the weight l o s s  is 
affected in a largo measure by the  chemical at tack.  The unusually high 
react ion ve loc i t i es  with which these reactions take place and the rapid 
oxidations i n  metals and alloys a l so  point  t o  t h e  sx t~eme  conditions whieh 
govern t h e  primary process, Copper samples wfth t h i n  films of gallium OP 
with a covering of t i n  have been eavitated in water t o  determine the  move- 
ment i n t o  t h e  copper, I n  t h e  l a t t e r  case the  t i n  l aye r  was destroyed and 
separated t oo  quickly t o  give any de f in i t e  resu l t s .  GaUm-covered copper- 
samples showed t h a t  some gdlWum became dtssolved by t h e  copper, Especially 

'tarnish colors. 

22. Cavftat5c-m resfstance-its d e m n d e n q e ~ r r  t h e 4  proper%ieli! of the  

I n  sect ion 8 we emphasized the charac te r i s t i c  e m s e  of t h e  

(1) Cavitation during t he  incubation period where t h e  only primary 
ppocesses are active, producing microdeformations as we12 as chemical 
sttac:ks. I n  one s t e e l  sample, subjected brief ly  t o  cevi%ation i n  the  vea- 
t u r i  tube, t he  oxids layem were t h i c k  enough t o  make a measurabie increase 

(2) CarY,tation a f t e r  tine Incubation period, wiC;h! she appearance of' a 
d e i b l e  volume consumption brought abou% by the continued primary process 
and especially by its resul5s-.notch impact, permanent faLlwe, and 
corrosion fatigue. A t  one time the primary process must be t h e  cause sf  
a destruction t kough  t;emperatwe and pressure maxima a t  tne plase where 
a vapor pocket collapses, A t  ano.t'her t h e  it. n r a t  cause lcrcaliaed stresses 
i n  the  immediate v i c i n i t y  of t h e  collapse by t h e  t h e d c  expansion due t o  the  
unbalanced temperatu~e distribution,* It is  not  'at all surpr is ing t h a t  X-rays 

*It is possible t h a t  the  s t re tch ing  and swelling mentioned Ln sect ion 17 
1s due to this cause, Surely, there  is some connection betweer, tni.5 arrd the 
appwen;t; i n c r e ~ s e  in s t ~ e n g t h  during the incubation period whieh was observed 
by Ssfiroter, Bottcher, v, Schwwz, and Mansel. I t  a l s o  throws some l i g h t  on 
the  reason why the property of cold forming 1 s  a measwe of g o d  cs-itation. 
re3istance. 
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high-frequency osc i l l a to r ,  thesa regions a r e  much i o o  small compared t o  the  
separated par t ic les .  The volume l o s s  taken a f t e r  a suf f ic ien t ly  long time 
( r e l a t i ve ly  long with respect t o  ,the incubation ~ e r i o d ) ,  i s  by i t s e l f  an 
adequate p rac t ica l  c r i t e r ion  i n  t he  t e s t i ng  of materials. Since the  weight 
l o s s  i s  t h e  1-esult of a composite phenomenon, primary process and secondary 
a t tack,  it i s  a much more comprehensive c r i t e r i o n  concerning cavi ta t ion 
res i s tance  than any s ing le  mechanical property, such as  t e n s i l e  or  compressive 
strength;  Materials with a low melting point, such as t i n ,  lead, cadmium, 
and zinc, have but very l i t t l e  res i s tance  as'a consequence of the  high 
local ized temperature maxima; magnesium and aluminum occupy a somewhat more 
favorable position; brasses and s t e e l s  display much grea te r  cavi ta t ion 
res i s tanceb  The t e n s i l e  and compressive strengths follow somewhat t he  same 
sequence. I n  Table 5 t h e  volume l o s s  a f t e r  10-minute cavi ta t ion with t he  
same amplitude i s  given f o r  pure annealed metals; a l so  shown a r e  t h e i r  
melting points and t h e i r  t e n s i l e  strengths (47). 

Table 5 

Volume lo s s  fo r  various metals due t o  cav i ta t ion  

Volume Melting Tensile s t rength 
l o s s  point ( ke /m2)  

Cavitat ed mater ia l  (m3) (O c) a t  20' c a t  500' c 

Lead ( f ine-grained) 10 327 1.35 o 

Cadmium (fine-grained) 0 o 7 321 6 -40 o 

Magne sim ( coars e-grained) 1 0 4  650 17000 0.50 

Quminum (medium f ine-grained) 0.5 658 U.30 0.60 

Brass d t h  65% Cu (coarse-grained) 0.03 850 50.00 6.00 

Carbon sSeel (finemgrained) 0.01 1,150 54.00 27.00 
and l e s s  t o  1,500 

The cavi ta t ion res is tance for  coarse-grained zinc l i e s  between t h a t  of 
cadmium and magnesium. The t a b l e  shows t h a t  there  i s  some advantage t o  
s e t t i n g  the cavi ta t ion res is tance pa ra l l e l  t o  conditions exis t ing at higher 
temperatures. Thus far t h e  materials  which have proved most r e s i s t a n t  a r e  
the  s t e l l i t e s ,  hard metals, aus t en t i t i c  and ledebur i t i c  s t ee l s .  

Additional f ac to r s  of considerable influence are t h e  s i z e  of grains 
and the  number and s i z e  of the  micropores. Highl3. porous s t e e l  and 
cast-iron specimens su f f e r  strong volume losses .  It i s  na tura l  t ha t  t h e  
type of the  c r t p t a l ,  whether homogeneous o r  heterogeneous, and the  
singular behavior of the  various c r y s t a l k  should have an appreciable 

-- *Aceo~$Sfto v. Bchwarz f i n e  grains are considerably more r e s i s t a n t  
t o  cavi ta t ion than coarse textures. 40 



With the  a id  o r  the  new t e s t i n g  p ~ o c e d w e s  fop a b ~ a s f o n  a elassif '%catfon 
system might be arranged s o  as t o  take i n t o  account t h e  s%moture  and t h e  
composi t i~n of' the be t t e r  known matepfals and t h e i r  e f f ec t  upon the  fncuba- 
t fon  period and any subsequent developments; , U n t i l  then ons can r e f e r  t o  
t he  tables  .of Kerr (32) and of Mouseon (361, which fo r  p rac t ica l  purposes 
ser-ve as guides i n  the  design and construction of machine p m t s  t o  be used 
where cav i ta t ion  cannot be avoided, 

Recently ~ e p o r t s  were published (573 of t e s t s  in which je ts*  of water at 
extpemely high velocit%es (1,c~O m OP 3,300 f t /sec)  were able  t+o cut through 
th ick  s t e e l  blosks i n  a very s h o d  the, To what extent t h i s  may prove 
useful  i n  connection wfch cavft,ation s tudies  remains t o  be seen, 

Ae soon as cavitation takes place it i s  axiomatlo t h a t  every mater ia l  
i s  attacked, Even the  s t rongest  and toughest are no.sxeeptlon and the re  i s  
no poss ib i l i t y  f ~ o m  the  standpoint of materials  t o  make p ~ o v f s i o m  f o r  ccan- 
p l e t e  prolection against  cavitatdon attack,, To e s t  up some standwcts f o r  
comparison wi%h other types of s t r e s se s  w i th  respect  t o  t he  degree of a t t ack  
and the res i s tance  of r.he material, we must consider tha& cavitation d i f f e r s  
from mechanical s t resses  such as tens l le ,  compressive or fat igue,  which have 
a s a f e ty  limit below which theye i s  no failureo I n  cavi ta t ion,  moreover, we 
have a typical wear procesh s u e r  t o  corrosion OP abrasion, Although 
somethss  of l i t t l e  p rac t ica l  significance because of its minuteness, t h i s  
wear always occurs wtth angr degree of cavitat ion,  no mattar how small, 
l k e ~ e f o ~ e ,  t he  a t tempt50  fnciude cavi ta t ion i n t o  t h e  category of fa t igue  
s t resses  o r  comoslon fa t lgue  cannot be e n t i r e l y  successful, The behavior 
of the  material does not fu~nisk! any ready cri%erion as t o  what cons t i tu tes  
t h e  l i m i t  of t he  f l u i d  ve10~ir ;g  below which no discernible  c a v i t a t i ~ n  damage 
takes plase, These limits may be dete-rminsd r a t h e r  by t h s  absence of t h e  
cavitatiorl processes, espoeiially the prmary processes, Offhand it appears 
very unlikely Chat tire cavLtaLlon Increase sho-dd merely be proporkional t o  
the increase in tine ~e1oc i t .y  of fluid, (671, From the ewelximents with the 
high-frequency osc i l l a to r  we  have seen t ha t  t h e  mplisude i s  s poTm~Pul 
factor .  Tnus, i t  is necessary t o  d e t e m n e  precisely  t he  s.i;re@.h of t he  
attack t o  arrive a t  some relative values generally true I n  rcate~ials testing 
for caviter&fon resiatanee,  Witn respect  t o  eorzoslon, t h i s  problem has 
already been soived; g%ven t h e  at tacking medim, l"us eoncent~a t ion  and 
temperature and %he s t a t e  of t n e  IzquSd, whether a% rest, or in motlon, t h e  
weight l o s s  car. be computed per unit area and per unit time, But how can 
one determine t h e  str.enGh of the  c aa t a f i on  attack? In what manner ie t h e  
degree of aktack observed i n  the oscillator t o  be correla ted with that; 
c;bseLvea I n  the drop-impaet apparatus, and w',th thaz  nn the  ven tur i  tube? 
And how i s  t h i s  t o  be carrfed over t o  p rac t i ca l  machine constructian' The 
extents of the areas involved irt cavi ta t fon a r e  h y d ~ c d y n d c a l l y  speaking 
very dif'fex:ent, even in the  same experimentd. procedure, as f o r  example, 
Ir: the o sc i l l a to r ,  The v01me LOSS in t e s t  samples of the  i den t i ca l  
material diff ernrig o d ~  in s i z e  cannot be d i sc r*Xnate ly  compared, The 
measurements, therefope, g i v e  rr.erely the  Pelative -relues, An appropriate 
aaterials t es t ing  procedure, standardized for" each Gype of tes t ing ,  i s  an 
absolute requirement, I n  tne  drop--pact test a de f in i t e  ve loc i ty  and I 

d ~ ~ e t e r  of the j e t  must be determined, o r  Cne ampl~.tude and accelerat ian 



a way might l a t e r  be found t o  e f f e c t  d i r e c t  comparisons among t h e  various 
water impact t e s t i ng  ,procedures, making possible the  derivation of con- 
version fac tors  from which t h e  absolute s t rength of the  cavi ta t ion a t tack i n  
specified accelerations and frequencies may be defined. 

v. SUMMARY 

Besides giving a c lear  concept of cavitat ion,  t h e  f i r s t  chapter 
describes t he  various t e s t i ng  arrangements, showing the  cause of the  
materials  damage by cavi ta t ion and the  r e l a t ed  water-h-er s t resses .  I n  
the  formation of vapor s t r e s s  regions and t h e  consequent materials  destruc- 
t i on  by flowing f l u id . t he re  i s  always a d u d  phase region a t  t he  walls of 
t he  machine par ts ,  namely liquid-vapor. The ~ l d e r ~ c o n c e p t  of cavitat ion,  
which e i t he r  demanded the  presence of high pressures (impulse-like s t r e s se s  
cawed by hressure waves) or e l s e  corrosion fa t igue  ware not  sa t isfactory.  
Mousson's and Ebert and Spannhalce's cavi ta t ion reais tance numbers f o r  
various materials  showed no re la t ionship t o  mechanical properties such as 
t e n s i l e  and compressive strength,  expansibil i ty,  or Brinell hardness. 

Our cavitat ion experiments and those of others with Gaines' magneto 
s t r i c t i o n  o sc i l l a to r  a re  compqed with t h e  venturi-tube and the  drop- 
impact t e s t s  (~ropfenschlaggerat)  . It appears t h a t  a l l  th ree  t e s t  methods 
gave essen t ia l ly  the  s&e resu l t s .  The time volume l o s s  curves always show 
one slope within which t he  volume losses  remain.rather s m a l l .  Also one 
always encounters i n  both the  o sc i l l a to r  and venturi-tube method the  l ine- 
l i k e  failure--direct proof of the  existence of '.brating and collapsing 
vapor pockets (see Figures 57 .and 62). I n  the  sane way the  concomitant 
chemical react ion may be viewed a s  t h e  secondary r e s u l t  of l o c a l  energy 
concentrations i n  the  col lapse  of the  vapor pockets by the  formation of oxide 

1 f i lms ( ~ i g u r e s  74 and 76); a l so  t h e  exposure of t h e  g r d n s  i n  polished t e s t  
specimens (Figures 12  and 79) by cavi ta t ion appears i n  both types of t e s t s .  

I I n  sect ion l71,the venturi-tube and osc i l l a to ry  t e s t s  show complete corres- 
pondence i n  t he  priplary mechanism of the phenomenon of cavitat ion.  Osci l la tor  
experiments determined the  vapor pocket formation t o  be a d i r ec t  re f lec t ion  
of the  region of damage i n  the  tes t  sample. If the  vapor pockets v ibra te  
and break i n  the  center, it i s  there  t h a t  the  s ea t  of t h e  major destruction 
i s  located, a s  is the  case with water at room temperature (Figures 30 and 39). 
I f  on the other hand the  pocket formation i s  confined t o  the border of the  
t e s t  specimen, the destruction occurs there  (Figures 31 and 45). The 
strong influence of t he  vapor pocket re la t ionship t o  t h e  magnitude of t h e  
dest ruct ion is thucj apparent. The influences of external  and vapor pressure, 
surface tension and v i scos i ty  were a l s o  investigated,  An increase i n  vapor 
pressure increases t h e  number of vapor pockets and consequently t h e  degree , 

of destruction. On t h e  other hand a diminished pressure dif ference 
eliminates the vibrating s t ab l e  vapor pockets, This explains t he  experi- 
mental findings of Peters and h i s  coworkers as well  a s  cur o m  r e s u l t s  where 
no damage was suffered b~ t e s t  specimens i n  any f l u i d  a t  or  near t he  boil ing 
point (sections 10, 11, and 12). The influence of s w f a c e  tension is qu i te  
strong, i.e. l iqu ids  with great  surfzce tension cause more damage, 



In  sect ion 15 we found t h a t  absorbed gas has very l i t t l e  influence 
upon cavi ta t ion,  

The high ve loc i t i e s  of the  chemical reaction and t h e  l a rge  number 
of mfcroscopfc destructions indicate  t h a t  the  plohmry process f s  accom- 
panied by l o c a l  temperature peaks, Therefore, t he  impact on t h e  minute 
area  creates  specia l  at tack conditions when t h e  collapse of the  bubble 
l i be ra t e s  c a p i l l a q  energy (sect ion 16) ,  This vapor pocket mechanism 
accounts fur t he  po~ous  supfaces being mope susceptible t o  cavi ta t ion attack 
than smooth supfaces. The conclusfons drawn from the  low pressure t e s t s  a r e  
t h a t  'the vapor pocket formations and not t he  Fluid impact &e ~ e s p o n s i b l e  
f o r  cavi ta t ion 'action (Figure 6 5 ) .  With the  external- pressure reduced t o  t he  , 

vapor pressure of w a t e r  a t  room temperature no damage was suffered by a t e s t  
specimen (sections 1.3 and 16). Under t h e  action of cavi ta t ion the  s t ruc tu ra l  
ar~angemefit changes a t  t h e  place of at tack.  F i w e s  85 and 87 show a shrinkage 
a t  the  joints. ~ e t d s  with- a s t r a igh t  c r y s t d n e  s t ruc ture  have t h e i r  s t r u c i  
t u r e  disor ientated (Figures 113 and US) .  

Fatigue and corrosion fa t igue  furthered by t h e  strong indentations caused 
by t h e  cavitat ion often-cover t h e  p i t s  brought about by the  cavi ta t ion,  
I n  some-metal2.c t.ezts this dual at tack,  ppfmaq ca&.tation, &id permanent 
f a i l u r e  can be pla inly  interpreted (Fagwe 841, The vohme l o s s  is a t t r i -  
buted t o  mecnani~al  action and not chemical corrosion. Onls with h f n h l ~  

I chemically ac t ive  cavitation mediums, such as lead i n  mero&y, i s  th&& 
i .  grea t ly  accelerated react ion (Figul.es 120 and 121). 
I . .- 

There remains t o  be developed a general m a t e r i a l s  t e s t  f o r  cavitat ion.  
The qua l i ty  of" cavitation r e s i s t i ng  materiais  depends mainly an i t s  c r z -  
tal lhe s t r u c t w e ,  I n  t h e  construction of hydraulic a d  marine machines 

I attention should be paid t o  t he  use of such mterfa1.s that dl1 resist 
cavi ta t ion  a c t f  on og a t  l e a s t  minimize it, since cavi ta t ion e ~ o s i o n  cannot 
be en t i r e ly  avoided, 
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Fig.  1. Shadow picture o f  cavi tat ion Fig.  2. Pressure distribu- 
a c t i o n  i n  Venturi tube, taken d t h  simple t i o n  i n  Venturi tube - Region 
spa+k (according t o  ~ G t t i n ~ e r  [20] ). of  destruction. 

Fig. 3, Destruction i n  Fig. 4. Test specimen aubjeoted t o  
annealed oast- iron specimen oavi tat ion attaok i n  modified diffusor 
subjeoted t o  oavi tat ion i n  (aocording t o  Yousson [36] )i natural 
Venturi chamber (from Ebert s i z e .  
and W.  Spannhake, . uripub- 
l i shed)  . One-half natural 
size. 



Fig. 5. Typioal damage oaused Fig. 6. Destruction i n  bronze t e s t  body 
by water j e t  (aooording t o  Mousson oavitated by oeo i l l a to r  (aooording t o  Kerr 
[36) ); four times enlarged. [32] ); four times enlarged. 

Fig. 7. Destruction in oas t  i r on  Xig. 8. Weight l o s s  with respect t o  time 
(aooording t o  Engle ason [19] ); I60 i n  various t e s t  bodies oavi ta ted i n  Venturi 
time s enlarged. tube a t  ~chwarzenb'ach plant. (From unpub- 

li she d work of Ebert and W. Spannhake) 

Water temperature 10' C. 
M a x .  water velooi ty  80m/seo 
Length of d i f fusor  160 mm 
Diameter of t e s t  bodies 40 mm 
VCMo = high chrome-molybdenum s t e e l  
S t  = s t e e l  
P G  = c a s t  p e r l i t e  
TG - annealed c a s t  i ron  
aff ixed G = hardened 
aff ixed U nonhardened 
tan B - r a t e  of ohenge 



Fig. 9. S l i p - l i n e s  formed i n  Fig. 10. Fa t igue  cracks i n  chroma 
oav i t a t ed  ohromz-nickel s t e e l ;  a t e e l  as a r e s u l t  of o a v i t a t i o n  (accord- 
(according t o  Bot tcher  [14] ); 140 ing t o  Bottcher [14] ); 140 t imes en- 
t imes enlarged. lkrged. 

Fig. 11. Grain exposure i n  Fig. 12. Magnitude of des t ruc t ion  
a brass body c a v i t i t e d  i n  water  a rea  i n  b r a s s  specimen (according t o  
(according t o  Schroter  1152) 5 v. Schwtlrz and Mantel [ 5 5 ]  ); 260 
10 times enlarged. times enlarged. 



Fig. 13. Strongly deformed, annealed Fig. 14. Lead y~epeoimen c a v i t a t e d  
cas t - i ron  speoimen, c a v i t a t e d  i n  Venturi i n  d i f f u s e r  ( ~ c h r o t e r .  [51] ); 40 
tube; a t  upper p a r t  of c y l i n d r i c a l  speci- t imes enlarged. 
men the plastio deformation i s  seen. 
(F'rom unpublished work of Eber t  and W. 
Spannhake) Natural  s ize .  

Fie. 15. E a t e r i a l s  t e s t i n g  i n  drop- Fig. 16. Attaok upon gray o a s t  
i m p c t  apparatus;  r ep resen ta t ion  of mate- i r o n  a f t e r  60,000 b p a o t s  wi th  im- 
r i a l s  s t r e n g t h  by ~ g h l e r  l i n e s  (according paot  apparatus.  16a before  test; 
t o  Vater [65] ). 16b a f t e r  t e s t .  ( ~ a a o r d i n g  t o  

A - pure i ron ;  B - martens i te  s t e e l  
Aokeret and de HalPer [s] ) I  120 
t imes enlarged. 

C - mar tecs i t e  o a a t  s t e e l  
D - c a s t  s t e e l  

Fig. 17. Fuasd groove i n  l e a d  
speoimen oav i t a t ed  i n  Venturi tube. 
Note inc reas ing ly  s t rong  destruo-  
t i o n  t o  r i g h t  of groove. 



Fig. 18. E l e c t r i c  Diagram of Osc i l l a to r .  

Ammeter f o r  o s c i l l a t i n g  
c i r o u i t  

Ammeter f o r  t o t a l  cu r ren t  

Ammeter f o r  g r i d  c u r r e n t  

Condenser f o r  o s c i l l a t i n g  
c i r c u i t  

Variable condenser f o r  
o s c i l l a t i n g  a i r c u i t  

Condensers f o r  minimizing 
f l u c t u a t i o n s  i n  high- 
t ens ion  l i n e  

R e c t i f i e r  t ubes  
Induct ion c o i l  
O s c i l l a t o r  c o i l s  

Choke c o i l s  t o  minimize 
f l u c t u a t i o n s  i n  high- 
t ens ion  l i n e  

Test  body 
Variable r e s i s t a n c e s  

Grid r e t u r n  r e s i s t a n c e  

O s c i l l a t i n g  rod ( tube)  
Transmit ter  tube 
Transformer f o r  high-tension con- 
ve r s ion  

Transformer f o r  hea t ing  f i l amen t s  
i n  r e c t i f i e r s  

Transformer f o r  hea t ing  f i l amen t  
In t r a n s m i t t e r  tuba 

Voltmeter i n  o s c i l l a t i n g  o i r c u i t  

High-voltage meter 

Voltmeter f o r  hea t ing  of t rans-  
11ii t t e r  tube 

Voltmeter f o r  hea t ing  of r e a t i f i e r  
tubes  

Voltmeter f o r  measurement of  induc- 
t i o n  c o i l  vo l t age  



Fig. 19. View o f  o s c i l l a t o r  wi th  
microscope. 

G Beaker containing l i q u i d  
M Microscope 
0 Eyepiece 
S O s c i l l a t o r  stand 

Sp O s c i l l a t o r  c o i l s  
Sr O s c i l l a t o r  rod 
I% Premagnetizing c o i l  

Weight of Specimen 

Fig. 20. Diagram of s tand  
and f a s t e n i n g  arrangement o f  
rod. 

Cavi ta t ion  l i q u i d  
Container f o r  F 
Base f o r  s t and  
Holding devioa 
Magnetic i n s u l a t i o n  
O s c i l l a t o r  c o i l  
Themo element 
 rem magnetizing coil 

Fig. 21. Frequenoy of 
o s c i l l a t o r  as a func t ion  
of n e i g h t  of specimen. 



Light  metal  

Outside th read  

Kay For adjustment 
hole  i n  X-ray oamera - Light metal  - Light metal 

Mano c r y s t a l  

Pig.  23. Weight l o s s  w i t h ' r e s p e c t  t o  
time of var ious  m a t e r i a l s  cavi taked  i n  
high-f requenoy osci lhretor  a t  20' C . Eaoh , 
type of ma te r i a l  19 rep.-e.scsnbed by two 
d i f f e r e n t  al loys.  ( ~ c o o r d l n ~  t o  Kerr [32] ). 

Pig.  22. Shapes of speoimens arid 
methods o f  a t t ach ing  them onto 
o e o i l l a t i n g  rod. 

22a. S tandard ,  speoimen. 

22b. Speoimen with i n l a i d  
heavy metal .  

22c. Speoimen f o r  determi- 
na t ion  o f  weight l o s s .  

22d. Specimen wi th  i n l a i d  
o rys t a l .  

Fig. 24. Weight loss of b r a e s  
speoimena aav i t a t ed  i n  high- 
frequenoy o s c i l l a t o r  a t  varioua 
water  temperatures. (From unpub- 
-3ished work of P e t e r s  and  Rightmire) 



Fig. 25. Xiokel h s t  speoimen 
o a d t a t e d  in o a o i l l a t o r  (mooording 
t o  Gainer [22] )#  two times enlarged. 

Fig. 26. Yg-Ca-alloy b e t  s p e o k  
omritated in e so i l l a t o r z  about natu- 
ral sits. ' 

Fig. 27. Aluminum t o s t  rrpeoimsn 
oavi ta ted  i n  water f o r  iS minutes; 
two times enlnrgod. 

Fig. 29. Graph of weight loss with 
reape o t  t o  amplitude of aluminum b u t  
epeoimena oaivitated i n  water a t  room. 
temperature f o r  10 minutes. (~nduoed 
vol tage  of 3 0 . r o l t s  oorresponda t o  en 
amplitude of 0.06 ma. ) 

Fig. 28. Average weight l o s s  w i t h  
t i m e , &  magnesium tea: 8peoaons oavi- 
t a t e d  i n  water from 0 t o  100 C; 
ampliwde, 0.06 nun. 



F p .  30 

Figs. 30 t o  34. Bubble f'oxamtio 
a t  surfaoe o f  steel t e a t  spsuhens 
various types of liquids. 

Fig. 30. D i s t i l l e d  water at 20; 
Fig. 31. Distil led uaz.trr at 80 
Fig. 32. Bent01 at 20 C 
~ i g .  34. ~ i q u i d  paraffin et 20' 



Fig.  35. 9-11 amplitude. Fig. 36. Large amplitcde, 

F igs ,  35 and 36. Bubble formation with 
two different s ired amplitudeaj about 
natural size. 

Fig. 3Ta. Pig, S7b. 

Fig. 37.. Bubble formation in  glycerin 
at 1/4 aeoond, ( P ) ~  and a t  1/2 aeoond, (b).  
Sidewise view; about natural s i ta .  





Fig. 48. Weight loss wikh 
respeot to eexperature; mnagne- 
oiuna s p e o b n s  aevitated in 
water for 10 minuter; anplitude 
0.06 nr* 

Fig. 49. Aluminum speoimen 
oavitoted in KOH (1/100 N) for 
1 minute g two time s enlarged. 

Fig. SQ, Alrraainum speofmsn oari- 
tsted in b C 1  uolution (1/1008) 
for 1 minub; two the8 snlarr~8d. 

. 61. Aluminum spwimen 
oavitahd in 30 peraent hydrogen 
peroxide for S minuteaj two 
times enlarged. 

Fig. 62. AluaPnum rpeokrrn orrri- 
h i a d  i n  bsarine (oatma-nrae  
mixturn) for 17 .rinnteaj iaro 
enlarged. 

Fig. 63. Alusainm 0~30imn 
onvitmted i n  ben601 for 17 
minutQsg two  tinsea enlarged. 



,. 'Boiling 
Point  

- 

Pig. 54. blmnum Fig. 55. A l U n u n  ~peoimena o a d h t e d  ' i n  methyl . apeaiman oavi ta ted i n  aloohol, e thyl  aloohol, oyalohexam, heptane,, . 
ethyl e ther  f o r  17 ootane, and m y 1  alaohol a t  variws temperatures 
minutes; k o  times en- (vapor pressures n speotively); about 1/6 natura l  
larged. ail;@. 

b 

Fig. 56. 200 times enlargsd. Fig. 67. 400 times enlarged. 
Figs. 56 and 57. Line-like miomdamage i n  brass sp~oimen 

oavitated i n  water f o r  a short  time. 

4 

. 
Eig. 58. Line-like mioro- F1 g. 59. Line-like micro- 

damage i n  brass  speoimsn ex- damage i n  antimony speoimen ex- - posed t o  cavi ta t ion act ion posed t o  cavi ta t ion aotion i n  
fo r  a long time; 200 times water for  a shor t  period; 200 
enlarge d. times enlamed. 



Fig. 60. 100 times enlarged. Pig. 61. 120 t imes enlarged. 

Figs. 60 and 61. ' Line-like rmfcrodmage i n .  heat-polirhed g l a s s  
epe6imeaa eav i ta ted  i n  -tor. 

Pig. 62. Line-lake 
microdamage I n  high a l l o y  
s t e e l ,  o rv i t a ted  i n  Venturi 
tube8 600 times enlarged. 

Fig. 63. h g e  i n  b rass  speoimbns oavi- 
%atad i n  water u n d ~ r  o m  atmophere expea8 
p ~ e s a u r e  a t  (a)  80 C, ( 0 )  90 C, (a) 100 C; 
(from unpuljliehad work of Pe te r s  m d  
Righ.tmire); about' n a tu r a l  sice. 

Big. 64. Arr*ng-gt 
fo r  aav i ta t ion  ezper imnta  
under various outer  prea- 
SUM) 8. 



Fig, 66. Weight l o s s  with respeot  t o  
time, i n  aluminum specimens cav i t a ted  /t" various l iquids ;  amplitude 0.06 mm. 

Fig. 68. Weight l o s s  of aLusairnum 
specimens cav i t a ted  f o r  20 min. i n  
water-aloohol mixtures a t  2s°C; a l s o  * 

with respect  to surfaoe tension, vapor 
pressure, and p a r t i a l  pressures  of 
water-alcohol mixtures; amplitude 0.05 
m. p1 p a r t i a l  pressure of water 

p2 
park ial pressure of  aloohol 

Fig. 67. Weight l o s s  with 
respeot  t o  surface tens ion of 
aluminum specimens cavi ta ted  i n  
var ious  l iquids ;  vapor pressure 
p = 1 0  mm Hg; v i s o o s i t y q  from 
0.007 to 0,04 dcm; amplitude 
0.05 mm. 

L. 

- - -.J, 
I 

anbv 

Fig. 69. Weight l o s s  of a l u m i n u  
specimen oavi ta ted  f o r  20 min. i n  
water-glyoe rin mixtures of var ious  
conoentrat i  ons; a l so  witPl reapeot  to 
vapor pressures and t h e i r  aasociatad 
v i s c o s i t i e s ;  amplituda 0.04 m. 



Figs.  70 t o  73. Cavi ta t ion  of  alum'nu 
test specimen i n  water  a t  various pressu 
and temperatures;  about  n a t u r a l  s iee .  

Fig. 70. p = 760 mrm Eg 

Fig. 71. p = 650 & Eg 

Fig. 72. p = 450 mn Hg 

Fig. 73. p 1: 360 mm Hg 

Fig. 74. Bonhardened oas t -  
i r o n  specimen c a v i t a t e d  i n  
Venturi  tube f o r  16 hours; 
(from unpublished work of Ebe 
and W .  S p ~ n n h a k e ) ~  about  3/4 
natural a i m .  

Fig. 75. Steel speoimen 
o a v i t a t e d  10 minutes i n  water  
with o s o i l l a t o r ;  about  4x0 
time a enlarged. 

Mg. 76. S t e e l  specimen 
a f t e r  long cav i t a t ion ;  t h e  
partial removal of the oxide 
i s  plainly seen.- 



Fig. 77. Magnesium i i p o i -  
men oavitated for short 
period; 60 t i m e  enlarged. 

Fig. 79. Brass specimgla, 
68% Cu, oavitated for 10 dn: 
about 100 time s enlarged. 

Fig. '78. Brass specimen, 
53% Cu, cavitated for 10 mint 
about 100 times enlarged. 

Pig. 80. Braas  speoimen, 
65% Cu, cavitated for 8 minp 
(border zone); about 250 
times enlarged. ' 

Fig. 81. Antimony speci- 
men slightly oavitated, 250 
time a enlarged. 

Fig. 82. Bigh outeoto id  
steel  speoimn, strongly 
oavitated; about 400 f3rPsrr 
enlarged. 



Fig. 88. Magnesium apeoimen Fig. 84. Zino apeeb n  
orvitakid i n  -tar far less oavitated in water for 25 
fhan 1/2 reoond; 100 times en- mina .+wo times enlarged. 
Iarged. 

g .  8 .  Before artitation. Fig. 86, After 1 reoond of 
oavif rti on. 

Fig. 87. hi$sr 2 re .ods  of oavifaeicar. , 



Fig. 88. 'Magnesium speci- 
men oavitated in ,wster for 10 
min; two times enlarged. 

Fig, 89. Braus spsoimen, 
65% Cu, cavitated i n  water for 
10 min; two times enlarged. 

Fig .  90. Microphotograph 
of brass specimen shown i n  Fig. 
69: about 79 times enlarged. 

Fig. 91. Brass specimen 
cavitated i n  water for 4 min; 
220 times enlarged. 

Fig. 92. Brass spenimen 
oavitsted i n  water for 4 min 
100 times enlarged. 

fig. 93. Brass specimen, 
55% Cu, ccsvitated i n  water, for 
12 min; (an added example show- 
ing the appearanoa of strong 
slippage lines); 220 times en- 
larged. 



Fie. 94. Fusion cav i ty  i n  Fig. 95, Napesium specimen 
cu&Lim specimen, c s ~ i t a t e d  s t rongly  c e v i t a t e d  i n  water;  220 
i n  water  f o r  1 hin; oaused by t imes enlarged. 
blovihole s i t u a t e d  d i r e c t l y  
ande r  the surface:  about two 
t imes e n l a r ~ e d .  

i:ig. 97. Magnesium speci- 
men c a v i t a t e d  i n  water 20 min; 

F ig .  96. Mg-Ca al.loy with about  130 times enlarged. 

4.8% Cu, c a v i t a t e d  i n  water ( ~ i  t h i n  t h e  existing l a r g e r  

f o r  15 min; about  250 t imes c a v i t a t i o n  p i t s ,  smaller 

en lwged.  p o i n t s  of a t t a c k  a r e  v i s i b l e .  ) 

Fig. 99. S t e e l  specimen cavi"- 

Fig. 98. Antimony monoc~ys ta l  t a t e d  for 30 seconds i n  Venturi 
cav i to t ad  i n  water f o r  15 min; tube; (from unpublished work of 

about  170 tianes enlarged. Ebert  rind W. S ~ ~ a k e ) ;  about 
400 t i u s  enlarged. 



Fig. 100. Glass apeoimen 
weakly oavittlted i n  water1 220 
times enlarged.  h he rtrong 
damage i n  the oenter deserves 
speoial attentions the mate- 
r i a l  behaved a s  though it had 
beoome plastio. The sharp 
edges ordinarily present in  
f raokured glass a re  not' pre s- 
ent. ) 

Fig. 101. Plexiglaps oavi- 
tated i n  miter f o r  1/2 minutes 
120 times enlarged. 

Yig. 182. Cavitated for Fig. 103. Cavitated f o r  2 
10 minutest 220 times en- minutesr 100 times enlarged. 
larged. 

Figs. 102 and 103. Sodium ohloride monocrystal 
oavitated i n  benzine. 





Big. 111. Before oavitation. 

Fig .  112. After aavitation 
/ 

Figs. 111 and 112. Refleoted ray X-ray photos of 
homogeneous Mg-Ca a1 loy apeaimen. 

Fig, 113. Before cavitation. Fig. 114. Cavitated f o r  
30 seconds. 

Figs. 113 t o  1155 Re- 
f lected rhy X-ray photw 
of copper specimen. 

Fig. 115. Cavitated for  120 
seconds. 




